跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李先明
Hsien-Ming Li
論文名稱: 徑向行星際磁場下日側極光與電離層對流型態
Dayside aurora and ionospheric convection under radial interplanetary magnetic fields
指導教授: 許志浤
Jih-Hong Shue
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 日側極光電離層對流徑向行星際磁場磁重聯
外文關鍵詞: dayside aurora, ionospheric convection, radial interplanetary magnetic field, magnetic reconnection
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討2014年1月4日徑向行星際磁場事件分別對日側極光與電離層對流型態的影響程度。過去的研究偏重在對磁層的影響層面或是特殊極光現象上,不同於過去研究,我們整合來自挪威Svarlbard島上的全天影像儀、芬蘭Hankasalmi高頻雷達、DMSP衛星及SuperMAG觀測資料,實施日側極光與電離層對流型態分析。分析的結果表明,日側極光出現三類不同的型態:侷限在某個緯度範圍內亮度增加、極向運動與赤道向運動。電離層對流型態出現太陽向流、反太陽向流以及兩者共存現象,從日側極光與電離層對流型態說明徑向行星際場具有使場向電流增加與磁重聯的特性,增強的場向電流從DMSP衛星與SuperMAG觀測資料間接證明源自於磁鞘高速流的作用,不同於南向與北向行星際磁場對電離層對流有固定且可預測的對流型態,這些對流型態在徑向行星際磁場期間交替出現,未來在電離層對流型態預報上必須注意徑向行星際磁場。


    This research explored the influence of the radial interplanetary magnetic field event on January 4, 2014 on the dayside aurora and ionospheric convection patterns, respectively. Previous studies focused on the impact on the magnetosphere or special aurora phenomena. Unlike previous studies, we coordinated the observations obtained from the all-sky imager on Svarlbard Island in Norway, the Hankasalmi high-frequency radar in Finland, DMSP satellites and SuperMAG data to examine the dayside aurora and ionospheric convection patterns for radial interplanetary magnetic field. The results of the analysis showed that there are three different patterns of dayside aurora: brightness increase limited to a certain latitude range, polar movement and equatorial movement. The convection patterns in the ionosphere included sunward flow, anti-sunward flow, and the coexistence of both. These patterns indicated that the radial interplanetary magnetic field had the characteristics of increasing the field-aligned current and magnetic reconnection. The enhanced field-aligned current indirectly proved from the observation data of DMSP satellite and SuperMAG that it originated from the effect of high-speed flow in the magnetosheath. Ionospheric convection was different from the fixed and predictable convection patterns under the southward and northward interplanetary magnetic fields. These convection patterns appeared alternately during the radial interplanetary magnetic field, and the radial interplanetary magnetic field must be paid attention to in the forecast of the ionospheric convection pattern in the future.

    中文摘要....................... i 英文摘要....................... ii 誌謝...........................iii 目錄...........................iv 圖目錄......................... vi 表目錄......................... viii 一、 緒論.......................1 1-1 日地關係簡介................ 1 1-2 徑向行星際磁場...............7 1-3 極光現象.....................11 1-4 高緯度電離層對流現象.......... 16 二、 觀測儀器簡介與事件選取.........19 2-1 太陽風參數觀測儀器與事件說明....19 2-1-1 Wind太空船簡介...............19 2-1-2 觀測事件說明.................22 2-1-3 延遲時間計算.................23 2-2 全天影像儀簡介................ 24 2-3 DMSP衛星任務簡介...............26 2-4 SuperDARN雷達簡介.............28 2-5 SuperMAG地磁資料簡介......... 30 三、 極光觀測現象與分析.............31 3-1 全天影像儀觀測資料..............31 3-2 DMSP衛星SSUSI觀測結果..........40 3-3 Longyearbyen地磁觀測結果.......41 3-4 討論...........................42 3-4-1 極光限制在緯度區間內亮度增加...42 3-4-2 極光具有運動型態..............46 3-4-3 地磁擾動現象..................51 3-5 小結...........................53 四、 電離層對流觀測現象與分析........55 4-1 芬蘭Hankasalmi雷達觀測資料......55 4-2 討論...........................60 4-2-1 對流發展不穩定階段............60 4-2-2 對流發展穩定階段..............67 4-3 小結...........................68 五、 總結與未來研究方向..............70 參考文獻............................72

    Akasofu, S. I. (1964). The development of the auroral substorm. Planetary and Space
    Science, 12(4), 273–282. https://doi.org/10.1016/0032-0633(64)90151-5
    Akasofu, S. I., & Kan, J. R. (1980). Dayside and nightside auroral arc systems.
    Geophysical Research Letters, 7(10), 753–756.
    https://doi.org/10.1029/GL007i010p00753
    Axford, W. I., & Hines, C. O. (1961). A unifying theory of high‐latitude geophysical
    phenomena and geomagnetic storms. Canadian Journal of Physics, 39(10), 1433–
    1464. https://doi.org/10.1139/p61-172
    Belcher, J. W., & Davis, Jr., L. (1971). Large-amplitude Alfven Waves in the
    interplanetary medium, 2. Journal of Geophysical Research, 76(16), 3534–3563.
    https://doi.org/10.1029/JA076i016p03534
    Blanco-Cano, X., Omidi, N., & Russell, C. T. (2009). Global hybrid simulations:
    Foreshock waves and cavitons under radial interplanetary magnetic field
    geometry. Journal of Geophysical Research, 114(A1), A01216.
    https//doi.org/10.1029/2008JA013406
    Borovsky, J. E., Birn, J., Echim, M. M., Fujita, S., Lysak, R. L., Knudsen D. J., et al.
    (2020). Quiescent Discrete Auroral Arcs: A Review of Magnetospheric Generator
    Mechanisms. Space Science Reviews, 216, 1. https://doi.org/10.1007/s11214-019-
    0619-5
    Boudouridis, A., Zesta, E., Lyons, R., Anderson, P. C., & Lummerzheim, D. (2003).
    Effect of solar wind pressure pulses on the size and strength of the auroral oval.
    Journal of Geophysical Research, 108(A4), 8012. https://
    doi.org/10.1029/2002JA009373
    Cameron, T., & Jackel, B. (2016). Quantitative evaluation of solar wind time-shifting
    methods. Space Weather, 14(11), 973–981.
    https://doi.org/10.1002/2016SW001451
    Cash, M. D., Hicks, S. W., Biesecker, D. A., Reinard, A. A., de Koning, C. A., & Weimer,
    D. R. (2016). Validation of an operational product to determine L1 to Earth
    propagation time delays. Space Weather, 14(2), 93–112.
    https://doi.org/10.1002/2015SW001321
    Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow, W. A., Grocott, A., et al.
    (2007). A decade of the Super Dual Auroral Radar Network (SuperDARN):
    scientific achievements, new techniques and future directions. Surveys in
    Geophysics, 28(1), 33–109. https://doi.org/10.1007/s10712-007-9017-8
    Christensen, A. B., Lyons, L. R., Hecht, J. H., Sivjee, G. G., Meier, R. R., & Strickland,
    D. G. (1987). Magnetic field‐aligned electric field acceleration and the
    characteristics of the optical aurora. Journal of Geophysical Research, 92(A6),
    6163–6167. https://doi.org/10.1029/JA092iA06p06163
    Coleman Jr, P. J., Davis Jr, L., Smith, E. J., & Sonett, C. P. (1962). Interplanetary
    Magnetic Fields. Science, 138(3545), 1099–1100.
    https://doi.org/10.1126/science.138.3545.1099
    Cowley, S. W. H., & Lockwood M. (1992). Excitation and decay of solar‐wind driven
    flows in the magnetosphere‐ionosphere system. Annales Geophysicae, 10(1–2),
    103–115.
    Dandekar, B. S., & Pike, C. P. (1978). The midday, discrete auroral gap. Journal of
    Geophysical Research, 83(A9), 4227–4236.
    https://doi.org/10.1029/JA083iA09p04227
    Delcourt, D. C., Malova, H. V., Zelenyi, L. M., Sauvaud, J.-A., Moore, T. E., & Fok, M.-
    C. (2005). Energetic particle injections into the outer cusp during compression
    events. Earth, Planets and Space, 57, 125–130.
    https://doi.org/10.1186/BF03352556
    Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical
    Review Letters, 6(2), 47–48. https://doi.org/10.1103/PhysRevLett.6.47
    Eriksson, E., Vaivads, A., Graham, D. B., Khotyaintsev, Yu. V., Yordanova, E., Hietala,
    H., et al. (2016). Strong current sheet at a magnetosheath jet: Kinetic structure and
    electron acceleration. Journal of Geophysical Research: Space Physics, 121(10),
    9608–9618. https://doi.org/10.1002/2016JA023146
    Fairfield, D. H. (1971). Average and unusual locations of the Earth's magnetopause and
    bow shock. Journal of Geophysical Research, 76(28), 6700–6716.
    https://doi.org/10.1029/JA076i028p06700
    Farris, M. H., & Russell, C. T. (1994). Determining the standoff distance of the bow shock:
    Mach number dependence and use of models. Journal of Geophysical Research,
    99(A9), 17681–17689. https://doi.org/10.1029/94JA01020
    Fasel, G. J. (1995). Dayside poleward moving auroral forms: A statistical study. Journal
    of Geophysical Research, 100(A7), 11891–11905.
    https://doi.org/10.1029/95JA00854
    Feldstein, Y. I., & Starkov, G. V. (1967). Dynamics of auroral belt and polar geomagnetic
    disturbances. Planetary and Space Science, 15(2), 209–229.
    https://doi.org/10.1016/0032-0633(67)90190-0
    Frey, H. U. (2007). Localized aurora beyond the auroral oval. Reviews of Geophysics,
    45(1), RG1003. https://doi.org/10.1029/2005RG000174
    Fujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., Hosokawa, K., & Itonaga, M. (2003). A
    numerical simulation of the geomagnetic sudden commencement: 1. Generation
    of the field-aligned current associated with the preliminary impulse. Journal of
    Geophysical Research, 108(A12), 1416. https://doi.org/10.1029/2002JA009407
    Gillies, D. M., Knudsen, D., Rankin, R., Milan, S., & Donovan, E. (2018). A statistical
    survey of the 630.0-nm optical signature of periodic auroral arcs resulting from
    magnetospheric field line resonances. Geophysical Research Letters, 45(10),
    4648–4655. https://doi.org/10.1029/ 2018GL077491
    Gjerloev, J. W. (2012). The SuperMAG data processing technique. Journal of
    Geophysical Research: Space Physics, 117(A09), A09213.
    https://doi.org/10.1029/2012JA017683
    Gosling, J. T., & Skoug, R. M. (2002). On the origin of radial magnetic fields in the
    heliosphere. Journal of Geophysical Research, 107(A10), 1327.
    https://doi.org/10.1029/2002JA009434
    Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E.
    C., et al. (1995). DARN/SuperDARN: A global view of the dynamics of highlatitude convection. Space Science Reviews, 71(1–4), 763–796.
    https://doi.org/10.1007/BF00751350
    Grygorov, K., Němeček, Z., Šafránková, J., Přech, L., Pi, G., & Shue, J.-H. (2016).
    Kelvin-Helmholtz wave at the subsolar magnetopause boundary layer under radial
    IMF. Journal of Geophysical Research: Space Physics, 121(10), 9863–9879.
    https://doi.org/ 10.1002/2016JA023068
    Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., & Hedgecock, P. C. (1978).
    The frontside boundary layer of the magnetopause and the problem of
    reconnection. Journal of Geophysical Research, 83(A7), 3195–3126.
    https://doi.org/10.1029/JA083iA07p03195
    Hietala, H., Phan, T. D., Angelopoulos, V., Oieroset, M., Archer, M. O., Karlsson, T., &
    Plaschke, F. (2018). In situ observations of a magnetosheath high-speed jet
    triggering magnetopause reconnection. Geophysical Research Letters, 45(4),
    1732–1740. https://doi.org/10.1002/2017GL076525
    Hietala, H., & Plaschke F. (2013). On the generation of magnetosheath high-speed jets
    by bow shock ripples. Journal of Geophysical Research: Space Physics, 118(11),
    7237–7245. https://doi.org/10.1002/2013JA019172
    Johnsen, M. G., & Lorentzen, D. A. (2012). A statistical analysis of the optical dayside
    open/closed field line boundary. Journal of Geophysical Research, 117(A2),
    A02218. https://doi.org/10.1029/2011JA016984
    Kotova, G., Verigin, M., Gombosi, T., Kabin, K., Slavin, J., & Bezrukikh, V. (2021).
    Physics-based analytical model of the planetary bow shock position and shape.
    Journal of Geophysical Research: Space Physics, 126(6), e2021JA029104.
    https://doi.org/10.1029/2021JA029104
    Kivelson, M. G., & Russell, C. T. (1995). Introduction to space physics, Cambridge
    University Press, New York.
    Kustov, A. V., Lyatsky, W. B., & Sofko, G. J. (1998). Super Dual Auroral Radar Network
    observations of near‐noon plasma convection at small interplanetary magnetic
    field Bz and By. Journal of Geophysical Research, 103(A3), 4041–4050.
    https://doi.org/10.1029/97JA03457
    Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K.
    H., et al. (1995). The Wind Magnetic Field Investigation. Space Science Reviews,
    71(1–4), 207–229. https://doi.org/10.1007/BF00751330
    Li, H.-M., Shue, J.-H., Taguchi, S., Nosé, M., Hosokawa, K., Ruohoniemi, J. M., et al.
    (2021). Dayside cusp aurorae and ionospheric convection under radial
    interplanetary magnetic fields. Journal of Geophysical Research: Space Physics,
    126(5), e2019JA027664. https://doi.org/10.1029/2019JA027664
    Lockwood, M. (1991). The excitation of ionospheric convection. Journal of Atmospheric
    and Terrestrial Physics, 53(3–4), 177–199. https://doi.org/10.1016/0021-
    9169(91)90103-E
    Lockwood, M., Carlson, H. C., & Sandholt, P. E. (1993). Implications of the altitude of
    transient 630‐nm dayside auroral emissions. Journal of Geophysical Research,
    98(A9), 15571–15587. https://doi.org/10.1029/93JA00811
    Lorentzen, D. A., Deehr, C. S., Minow, J. I., Smith, R. W., Stenbaek‐Neielsen, H. C.,
    Sigernes, F., et al. (1996). SCIFER‐Dayside auroral signatures of magnetospheric
    energetic electrons. Geophysical Research Letters, 23(14), 1885–1888.
    https://doi.org/1010.1029/96GL00593
    Lorentzen, D. A., & Moen, J. (2000). Auroral proton and electron signatures in the
    dayside aurora. Journal of Geophysical Research, 105(A6), 12733–12745.
    https://doi.org/10.1029/1999JA900405
    Lui, A. T. Y., Perreault, P., Akasofu, S.-I., & Anger, C. D. (1973). The diffuse aurora.
    Planetary and Space Science, 21(5), 857–858. https://doi.org/10.1016/0032-
    0633(73)90102-5
    Maynard, N. C., Burke, W. J., Sandholt, P. E., Moen, J., Ober, D. M., Lester, M., et al.
    (2001). Observations of simultaneous effects of merging in both hemispheres.
    Journal of Geophysical Research, 106(A11), 24551–24577.
    https://doi.org/10.1029/2000JA00315
    Maynard, N. C., Moen, J., Burke, W. J., Lester, M., Ober, D. M., Scudder, J. D., et al.
    (2004). Temporal-spatial structure of magnetic merging at the magnetopause
    inferred from 557.7-nm all-sky images. Annales Geophysicae, 22(8), 2917–2942.
    https://doi.org/10.5194/angeo-22-2917-2004
    Mende, S. B., Rairden, R. L., Lanzerotti, L. J., & Maclennan, C. G. (1990). Magnetic
    impulses and associated optical signatures in the dayside aurora. Geophysical
    Research Letters, 17(2), 131–134. https://doi.org/10.1029/GL017i002p00131
    Meng, C.-I., & Lundin, R. (1986). Auroral morphology of the midday oval. Journal of
    Geophysical Research, 91(A2), 1572–1584.
    https://doi.org/10.1029/JA091iA02p01572
    Merka, J., Szabo, A., Šafránková, J., & Němeček, Z. (2003). Earth's bow shock and
    magnetopause in the case of a field‐aligned upstream flow: Observation and
    model comparison. Journal of Geophysical Research, 108(A7), 1269.
    https://doi.org/10.1029/2002JA009697
    Murphy, N., Smith, E. J., & Schwadron, N. A. (2002). Strongly underwound magnetic
    fields in co-rotating rarefaction regions: Observations and Implications.
    Geophysical Research Letters, 29(22), 2066.
    https://doi.org/10.1029/2002GL015164
    Ness, N. F., & Burlaga, L. F. (2001). Spacecraft studies of the interplanetary magnetic
    field. Journal of Geophysical Research, 106(A8), 15803–15817.
    https://doi.org/10.1029/2000JA000118
    Neugebauer, M., Goldstein, R., & Goldstein B. E. (1997). Features observed in the
    trailing regions of interplanetary clouds from coronal mass ejections. Journal of
    Geophysical Research, 102(A9), 19743–19751. https://doi.org/
    10.1029/97JA01651
    Newell, P. T., & Meng, C.-I. (1992). Mapping the dayside ionosphere to the
    magnetosphere according to particle precipitation characteristics. Geophysical
    Research Letters, 19(6), 609–612. https://doi.org/10.1029/92GL00404
    Newell, P. T., Meng, C.‐I., Sibeck, D. G., & Lepping, R. (1989). Some low‐altitude cusp
    dependencies on the interplanetary magnetic field. Journal of Geophysical
    Research, 94(A7), 8921–8927. https://doi.org/10.1029/JA094iA07p08921
    Newell, P. T., Sotirelis, T., & Wing, S. (2009). Diffuse, monoenergetic, and broadband
    aurora: The global precipitation budget. Journal of Geophysical Research,
    114(A9), A09207. https://doi.org/10.1029/2009JA014326
    Nishino, M. N., Saito, Y., Tsunakawa, H., Harada, Y., Takahashi, F., Yokota, S., et al.
    (2020). Decrease of the interplanetary magnetic field strength on the lunar dayside
    and over the polar region. Icarus, 335, 113392.
    https://doi.org/10.1016/j.icarus.2019.113392
    Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Keller, J., Lobell, J., et
    al. (1995). SWE, A Comprehensive Plasma Instrument for the Wind Spacecraft.
    Space Science Reviews, 71(1–4), 55–77. https://doi.org/ 10.1007/BF00751326
    Øieroset, M., Sandholt, P. E., Denig, W. F., & Cowley, S. W. H. (1997). Northward
    interplanetary magnetic field cusp aurora and high‐latitude magnetopause
    reconnection. Journal of Geophysical Research, 102(A6), 11349–11362.
    https://doi.org/10.1029/97JA00559
    Parker, E. N. (1958). Dynamics of the interplanetary gas and magnetic fields.
    Astrophysical Journal, 128, 664–676. https://doi.org/10.1086/146579
    Paxton, L. J., Morrison, D., Zhang, Y., Kil, H., Wolven, B., Ogorzalek, B. S., et al. (2002).
    Validation of remote sensing products produced by the Special Sensor Ultraviolet
    Scanning Imager (SSUSI): A far UV imaging spectrograph on DMSP F-16.
    Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for
    Atmospheric and Space Research IV, 4,485, 338–348.
    https://doi.org/10.1117/12.454268
    Pi, G., Shue, J.‐H., Chao, J.‐K., Němeček, Z., Šafránková, J., & Lin, C.‐H. (2014). A
    reexamination of long duration radial IMF events. Journal of Geophysical
    Research: Space Physics, 119(9), 7005–7011.
    https://doi.org/10.1002/2014JA019993
    Pi, G., Shue, J.-H., Grygorov, K., Li, H.-M., Němeček, Z., Šafránková, J., et al. (2017).
    Evolution of the magnetic field structure outside the magnetopause under radial
    IMF conditions. Journal of Geophysical Research: Space Physics, 122(4), 4051–
    4063. https://doi.org/10.1002/2015JA021809
    Plaschke, F., Hietala, H., & Angelopoulos, V. (2013). Anti-sunward high-speed jets in
    the subsolar magnetosheath. Annales Geophysicae, 31(10), 1877–1889.
    https://doi.org/10.5194/angeo-31-1877-2013
    Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdič, P., Karlsson, T., et al.
    (2018). Jets downstream of collisionless shocks. Space Science Reviews, 214(5),
    81. https://doi.org/10.1007/s11214-018-0516-3
    Qi, Q., Hui‐Gen, Y., Quan‐Ming, L., & Ze‐Jun, H. (2017). Correlation between emission
    intensities in dayside auroral arcs and precipitating electron spectra. Chinese
    Journal of Geophysics, 60(1), 1–11. https://doi.org/10.1002/cjg2.30023
    Russell, C. T., & Elphic, R. C. (1978). Initial ISEE magnetometer results: magnetopause
    observations. Space Science Reviews, 22(6), 681–715.
    https://doi.org/10.1007/BF00212619
    Samson, L. C., Cogger, L. L., & Pao, Q. (1996). Observations of field line resonances,
    auroral arcs, and auroral vortex structures. Journal of Geophysical Research,
    101(A8), 17373–17383. https://doi.org/10.1029/96JA01086
    Samsonov, A. A., Nĕmeček, Z., Šafránková, J., & Jelínek, K. (2012). Why does the
    subsolar magnetopause move sunward for radial interplanetary magnetic field?
    Journal of Geophysical Research, 117(A5), A05221.
    https://doi.org/10.1029/2011JA017429
    Sandholt, P. E., Deehr, C., Egeland, A., Lybekk, B., Viereck, R., & Romick, G. (1986).
    Signatures in the dayside aurora of plasma transfer from the magnetosheath.
    Journal of Geophysical Research, 91(A9), 10063–10079.
    https://doi.org/10.1029/JA091iA09p10063
    Sandholt, P. E., Farrugia, C. J., & Denig, W. F. (2004). Dayside aurora and the role of
    IMF |By|/| Bz|: detailed morphology and response to magnetopause reconnection.
    Annales Geophysicae, 22(2), 613–628. https://doi.org/10.5194/angeo-22-613-
    2004
    Sandholt, P. E., Farrugia, C. J., Moen, J., Cowley, S. W. H., & Lybekk, B. (1998).
    Dynamics of the aurora and associated convection currents during a cusp
    bifurcation event. Geophysical Research Letters, 25(23), 4313–4316.
    https://doi.org/10.1029/1998GL900113
    Sandholt, P. E., Lockwood, M., Oguti, T., Cowley, S. W. H., Freeman, K., Lybekk, B.,
    et al. (1990). Midday auroral breakup events and related energy and momentum
    transfer from the magnetosheath. Journal of Geophysical Research, 95(A2),
    1039–1060. https://doi.org/ 10.1029/JA095iA02p01039
    Schwadron, N. A. (2002). An Explanation for Strongly Underwound Magnetic Field in
    Co-rotating Rarefaction Regions and its Relationship to footpoint Motion on the
    the Sun. Geophysical Research Letters, 29(14), 1663.
    https://doi.org/10.1029/2002GL015028
    Shue, J.-H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., et al. (1997).
    A new functional form to study the solar wind control of the magnetopause size
    and shape. Journal of Geophysical Research, 102(A5), 9497–9511.
    https://doi.org/ 10.1029/97JA00196
    Shue, J.-H., Chao, J.-K., Song, P., McFadden, J. P., Suvorova, A., Angelopoulos, V., et
    al. (2009). Anomalous magnetosheath flows and distorted subsolar magnetopause
    for radial interplanetary magnetic fields. Geophysical Research Letters, 36(18),
    L18112. https://doi.org/10.1029/2009GL039842
    Spreiter, J. R., Summers, A. L., & Alksne, A. Y. (1966). Hydrodynamic flow around the
    magnetosphere. Planetary and Space Science, 14(3), 223–353.
    https://doi.org/10.1016/0032-0633(66)90124-3
    Suvorova, A. V., Shue, J.‐H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa,
    H., et al. (2010). Magnetopause expansions for quasi‐radial interplanetary
    magnetic field: THEMIS and Geotail observations. Journal of Geophysical
    Research: Space Physics, 115(A10), A10216.
    https://doi.org/10.1029/2010JA015404
    Taguchi, S., Hosokawa, K., & Ogawa, Y. (2015). Investigating the particle precipitation
    of a moving cusp aurora using simultaneous observations from the ground and
    space. Progress in Earth and Planetary Science, 2: 11.
    https://doi.org/10.1186/s40645-015-0044-7
    Taguchi, S., Hosokawa, K., & Ogawa, Y. (2019). Plasma flow in the north‐south aligned
    discrete aurora equatorward of the cusp. Journal of Geophysical Research: Space
    Physics, 124(12), 10778–10793. https://doi.org/10.1029/2019JA026895
    Taguchi, S., Hosokawa, K., Ogawa, Y., Aoki, T., & Taguchi, M. (2012). Double bursts
    inside a poleward-moving auroral form in the cusp. Journal of Geophysical
    Research: Space Physics, 117(A12), A12301. https://doi.org/
    10.1029/2012JA018150
    Tang, B. B., Wang, C., & Li, W. Y. (2013). The magnetosphere under the radial
    interplanetary magnetic field: A numerical study. Journal of Geophysical
    Research: Space Physics, 118(12), 7674–7682.
    https://doi.org/10.1002/2013JA019155
    Vorobjev, V. G., Starkov, G. V., Gustafsson, G., Feldshtein, Ia. I., & Shevnina, N. F.
    (1975). Dynamics of day and night aurora during substorms. Planetary and Space
    Science, 23(2), 269–278. https://doi.org/10.1016/0032-0633(75)90132-4
    Walsh, A. P., Haaland, S., Forsyth, C., Keesee, A. M., Kissinger, J., Li, K., et al. (2014).
    Dawn-dusk asymmetries in the coupled solar wind-magnetosphere-ionsphere
    system: a review. Annales Geophysicae, 32(7), 705–737.
    https://doi.org/10.5194/angeo-32-705-2014
    Wang, Z., Hu, H., Lu, J., Han, D., Liu, J., Wu, Y., et al. (2021). Observational evidence
    of transient lobe reconnection triggered by sudden northern enhancement of IMF
    Bz. Journal of Geophysical Research: Space Physics, 126(9), e2021JA029410.
    https://doi.org/10.1029/2021JA029410
    Wang, B., Nishimura, Y., Hietala, H., Lyons, L., Angelopoulos, V., Plaschke, F., et al.
    (2018). Impacts of magnetosheath high-speed jets on the magnetosphere and
    ionosphere measured by optical imaging and satellite observations. Journal of
    Geophysical Research: Space Physics, 123(6), 4879–4894.
    https://doi.org/10.1029/2017JA024954
    Wilson, L. B., Brosius, A. L., Gopalswamy, N., Nieves-Chinchilla, T., Szabo, A., Hurley,
    K., et al. (2021). A quarter century of wind spacecraft discoveries. Reviews of
    Geophysics, 59(2), e2020RG000714. https://doi.org/10.1029/2020RG000714
    World Data Center for Geomagnetism, Kyoto, Nosé, M., Iyemori, T., Sugiura, M., &
    Kamei, T. (2015). Geomagnetic AE index. https://doi.org/10.17593/15031-54800
    Zhou, X.-Y., Fukui, K., Carlson, H. C., Moen, J. I., & Strangeway, R. J. (2009). Shock
    aurora: Ground-based imager observations. Journal of Geophysical Research,
    114(A12), A12216. https://doi.org/10.1029/2009JA014186

    QR CODE
    :::