跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林雍健
Yuo-Jian Lin
論文名稱: 耦合有限元素法與邊界積分式於隔音牆效能之分析
指導教授: 鄔蜀威
Shu-Wei Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 64
中文關鍵詞: 二維散射隔音牆邊界元素法有限元素法放射插入損失
外文關鍵詞: two -dimensional, scattering, barrier, boundary element method, finite element method, radition, insertion loss
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 而本論文提出耦合有限元素法與邊界積分方程應用於隔音牆之散射聲場問題上,
    文中並使用二維的形式來分析。 本文所使用的方法避開了傳統邊界積分方程之奇異積分,
    使得程式的設計既簡單又直接, 同時也解決了有限元素法在處理外部聲場問題上的困難。
    由測試結果顯示, 所得到的數值解與解析解相比極為準確,
    證實此方法應用在聲學問題上, 為一有效且可靠的數值方法。
    文中將對高度、 形狀等隔音性能之影響因素進行探討, 數值分析結果顯示,
    高度為影響隔音牆性能之主要因素。 此外, 對於形狀之分析則顯示,
    在T字形隔音牆上方加裝圓柱, 則可以明顯提高隔音牆之性能。



    Most of the researches regarded barrier anaiysis as a boundary element method.
    This study presents the application of the coupled Finite Element Method and Boundary Integral Equation for the
    scattering by rigid barrier in a sound field. The two dimensional consideration is adopted in present work.
    The coupled method avoids the well-known singularity of Boundary Integral Equation
    and eliminates the difficulties when the FEM handles the exterior acoustics.
    The implementation is a straight forward and easy process.
    The numerical results are very accurate compared to analytical solutions.
    It is proved that this method is an efficient and reliable numerical method in handling the acoustic problems.
    The acoustic performance infinence factors, such as height and shape of a barrier are also investigated.
    From numerical results, one can find that height is the most important factor on barrier performance.
    Further, barrier shape can also affect the performance effectively. A rectangular barrier with cylindrical
    top can strongly raise the overall performance of a barrier choice in barrier design.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 本文架構 4 第二章 有限元素公式 6 2.1 二維聲場有限元素公式推導 6 2.2 數值解法 9 第三章 邊界元素公式 13 3.1 二維聲場邊界積分公式推導 13 3.2 非唯一性問題 17 3.3 數值解法 21 第四章 耦合有限元素法與邊界積分式 23 4.1 耦合的基本原理 23 4.2 耦合公式推導 24 4.3 非唯一性問題 26 4.4 半平面問題公式推導 27 4.5 散射問題公式推導 30 第五章 實例測試與討論 32 5.1 程式測試 32 5.2 隔音牆分析 39 5.2.1 高度的影響 41 5.2.2 形狀的影響 48 第六章 結論 54 參考文獻 56 附錄A 求解Bessel function的程式 61 附錄B 求解Bessel function的程式 63

    1.Petyl, M. (1982) `` Finite Element Techniques for Acoustics," in:R.G. White and J.G. Walker, eds., Noise and Vibration, EllisHorwood Limited, Chichester, West Sussex.
    2.Petyl, M., Lea, J., and Koopmann, G (1976) `` A Finite Element
    Method for Determing the Acoustic Modes of Irregular Shaped
    Cavities," Journal of Sound and Vibration, Vol. 45, pp.495-502.
    3.Shaw, R.P. (1988) `` Integral Equation Methods in Acoustics,'' in:C.A.Brebbia, ed.,Boundary Element X,Vol. 4: Geomechanics,Wave Propagation and Vibrations, Springer-Verlag, London, pp.221-244.
    4.Copley, L.G. (1967) `` Integral Equation Method for Radition fromVibrating Bodies,''The Journal of Acoustical Society of
    America,Vol. 41, No. 4, pp. 807-816.
    5.Schenck, H.A. (1968) `` Improved Integral Formulation for AcousticRadition Problems,"The Journal of Acoustical Society ofAmerica, Vol. 44, No. 1, pp. 41-58.
    6.Burton, A.J. and Miller, G.F. (1971) `` The Application of
    Integral Equation Methods to the Numerical Solution of Some
    Exterior Boundary-Value Problems,'' Proceedings of the Royal
    Society, London A , Vol. 323, pp. 201-210.
    7.
    Mathews, I.C. (1979)
    Sound Radiation from Vibrating Elastic Structures of Abritrary Shape,Ph.D.Thesis, Department of Aeronautics, Imperial College, London.
    8.Zienkiewicz, O.C., Kelly, D.W., and Bettess, P. (1977) `` The
    Coupling of the Finite Element Method and Boundary Solution
    Procedures,'' International Journal for Numerical Methods in
    Engineering,Vol. 11, pp 355-375.
    9.Wu, S.W. (1992) `` Coupled Finite Element and Boundary Element
    Method for Axisymmetric Fluid-Structure Interation,'' The Chinese Journal of Mechanics,Vol. 8, pp. 31-41.
    10.Schenk, H.A. and Benthieen, G.W. (1989) `` The Application of aCoupled Finite-Element Boundary-Element Technique to Large-ScaleStructural Acoustic Problems,'' in: C.A.Brebbia and J.Connor, ed., Advanced in Boundary Element Methods}, pp. 309-317.
    11.Dobus, B. (1994) `` Coupling Finite element and Boundary ElementMethods on a Mixed Solid-Fluid/Fluid-Fluid Boundary for Radiationor Scatering Problems,'' The Journal of Acoustical Society of America, Vol. 96, No. 6, pp. 3792-3799.
    12.
    Seznet, R. (1980)``Diffraction of Sound around Barrier : Use of the Boundary Element Technique,"Journal of Sound and ibration, Vol. 73, pp. 195-209.
    13.Hothersall, D.C., Chandler-Wilde, S.N. and Hajmirzae, N.M. (1991)``The Efficiency of Single Noise Barrier," Journal of Sound and Vibration, Vol. 146, pp. 303-322.
    14.Lacerda, L.A., Wrobel, L.C., and Mansur, W.J. (1997)
    ``A Dual Bounary Element Formulation for Sound Propagation AroundBarrier Over an Impedance Plane,"
    Journal of Sound and Vibration, Vol. 202, No. 2, pp. 235-247.
    15.Jean, D. (1985)``The Effect of Structure Elasticity on the Efficiency of Noise Barriers," Journal of Sound and Vibration,} Vol. 237, No. 1, pp. 1-21.
    16.Chandle-Wilde, S.N. and Hothersall, D.C. (1995)
    ``Efficient Calculation of the Green Function for Acoustic
    Propagation Above a Homogeneous Impedance Plane,"
    Journal of Sound and Vibration, Vol. 180, pp. 705-724.
    17.Jean, D., Defrance, G., and Gabillet, Y. (1999)
    ``The Importance of Source Type on the Assessment of Noise Barrier," Journal of Sound and Vibration, Vol. 212, pp. 275-294.
    18.Habault, D. and Filippi, D.J.T. (1998)
    ``Light Fluid Approximation for Sound Radiation and Diffraction by Thin Elastic Plates,"Journal of Sound and Vibration, Vol. 213, pp. 333-374.
    19.Wang, C.N. (1998)
    ``A Study on the Acoustic Performance of Finite Length Barriers,"Bulletin College of Engineering, N.T.U,
    No. 73, pp. 103-116.
    20.
    Morse, P.M. and Ingard, K.U. (1968)
    Theoretical Acoustics, McGraw-Hill, New York.
    21.
    Prak, J.M. and Eversman, W. (1994)
    ``A Boundary Element Method for Propagation Over Absorbimg Boundaries,"
    Journal of Sound and Vibration, Vol. 175, pp. 197-218.
    22.
    Sommerfeld, A. (1896)
    ``Mathematische Annalen,"
    Mathematische Theorie der Diffraktion, Vol. 47, pp. 317-347.
    Math
    23.Okubo, T. and Fujiwara, K. (1999)
    ``Efficiency of a Noise Barrier with an Acoustically Soft Cylindrical Edge for Practical Use,"
    The Journal of Acoustical Society of America, Vol. 105, No. 6, pp. 3326-3335.
    24.
    Moser, M. and Volz, R. (1999)
    ``Improvement of Sound Barrier Using Headpieces with Finite Acoustic Impedance,"
    The Journal of Acoustical Society of America, Vol. 106, No. 6, pp. 3049-3060.
    25.
    Maekawa, Z. (1968)
    ``Noise Reduction by Screens,"
    Application Acoustic, Vol. 1, pp. 157-173.
    26.Kurze, U.J. (1974)
    ``Noise Reduction by Barriers,"
    The Journal of Acoustical Society of America, Vol. 55, pp. 504-518.
    27.Lam, Y.W. and Roberts, S.C. (1993)
    ``A Simple Method for Accurate Prediction of Finite Barrier Insertion Loss,"
    The Journal of Acoustical Society of America,} Vol. 93, No. 3, pp. 1445-1452.
    28.
    L''Esperance, A. (1989)
    ``The Insertion Loss of Finite Length Barrier on the Ground,"
    The Journal of Acoustical Society of America, Vol. 86, No. 1, pp. 179-183.
    29.
    Finlayson, B.A. (1972)
    The Method of Weighted Residuals and Variational Principles,
    Academic Press, New York.
    30.
    Yang, S.A. (1999)
    ``A Boundary Integral Equation Method for Two-Dimensional Acoustic Scattering Problems,"
    The Journal of Acoustical Society of America, Vol. 105, No. 1, pp. 93-105.
    31.
    Abramowitz, M. and Stegun, I.A. (1970)
    Handbook of Mathematical Function with Formulas,Graphs,and Mathematical Tables, Dover, New York.
    32.
    Meyer, W.L., Bell, W.A., Zinn, B.T., and Stallybrass, M. P. (1978)
    ``Boundary Integral Solutions of Three Dimensional Acoustic Radiation Problems,",Journal of Sound and Vibration,Vol. 59, pp. 245--262.
    33.Terai, T. (1980)``On Calculation of Sound Fields Around Three Dimensional Objects by Integral
    Equation,",Journal of Sound and Vibration,Vol. 69, No. 1, pp. 71--100.
    34.Amini, S. and Wilton, D.T. (1986)
    ``An Investigation of Boundary Element Methods for the Exterior Acoustic Problem,",Computer Methods in Applied Methanics and Engineering,Vol. 54, pp. 49--65.
    35.Amini, S. and Harris, P.J. (1988)
    ``Boundary Element and Finite Element Methods for the Coupled Fluid-Structure Interaction Problem,", in: C. A. Brebbia, ed.,
    Boundary Elements X, Vol 1: Mathematical and Computational Aspects, Springer-Verlag, London, pp. 509--520.
    36.Chenshaw, C.W. (1962)
    Natinal Physical Laboratory Mathematical Tables,
    Vol. 5, Her Majesty''s Stationery office, London, England.
    37.蘇德勝 (1991) 噪音原理及控制, 臺隆書店.

    QR CODE
    :::