| 研究生: |
張智評 Chih-Ping Chang |
|---|---|
| 論文名稱: |
超音波振動輔助液中磨削雷射積層鐵基金屬玻璃材料之研究 A Study on Ultrasonic Vibration Assisted Submerged-Grinding of Laser Additive Manufactured Fe-based Metallic Glass |
| 指導教授: |
崔海平
Hai-Ping Tsui |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 雷射積層鐵基金屬玻璃 、磨削 、超音波振動 |
| 外文關鍵詞: | Laser additive manufactured Fe-based metallic glass, Grinding, Ultrasonic vibration assist |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用超音波振動輔助及液中加工的方式針對雷射積層鐵基金屬玻璃材料進行端面磨削加工之研究,探討各種加工參數如超音波功率等級、進給速度、切削深度及主軸轉速等,並針對各種加工特性如表面粗糙度值與實際加工深度值結果進行探討,希望獲得較小的表面粗糙度值與較精確的實際加工深度值,並利用光學顯微影像量測儀(OM)、掃描式電子顯微鏡(SEM)及雷射共軛焦掃描顯微鏡(LSCM)觀察試片表面微結構,再以X光繞射儀(XRD)進行結晶相鑑定分析以及使用SEM與能量色散X射線光譜儀(EDX)進行磨輪加工後之觀察。
實驗結果顯示,超音波振動輔助液中磨削可有效避免雷射積層鐵基金屬玻璃材料於加工過程中產生脆裂的情形,以及避免被加工材料於加工過程中產生高溫,進而造成被加工材料有再結晶的現象發生,而根據實驗結果在超音波功率等級Level 8、進給速度20 mm/min、切削深度0.005 mm及主軸轉速8000 rpm,可得到最佳表面粗糙度值0.026 μmRa,以及較精確的實際加工深度值0.0048 mm,另透過SEM與EDX進行磨輪表面觀察與元素分析可發現,應用超音波振動輔助可減少磨輪上磨粒脫落的情形,並提高磨輪的使用壽命。
This research adopts ultrasonic vibration assisted and under-liquid machining method to study the face grinding of the laser additive manufactured Fe-based Metallic Glass. The effect of ultrasonic power level, feeding speed, cutting depth and spindle speed on the surface roughness value and actual processing depth value were discussed in the experiment. The experiment is expected to obtain a smaller surface roughness and a more accurate cutting depth. In addition, The optical microscopy (OM), scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM) are used to observe the surface microstructure of the work-pieces. The X-ray diffraction analysis (XRD) is used for crystal phase identification analysis. The wear situation of the grinding wheel is examined with SEM and energy-dispersive X-ray spectroscopy (EDX) after the processing.
The experimental result shows that Ultrasonic Vibration Assisted Submerged-Grinding can effectively avoid the work-pieces rupture during processing. It also can prevent the work-pieces from generating high temperatures and recrystallizing due to high temperatures during the process. According to the experimental results, the best cutting depth 0.0048 mm and surface roughness 0.026 μmRa can be obtained under ultrasonic power level 8, feeding speed 20 mm/min, cutting depth 0.005 mm and spindle speed 8000 rpm. In addition, The grinding wheel surface and element composition analysis are observed and analyzed with SEM and EDX. It can be found that the application of ultrasonic vibration assist can reduce the occurrence of abrasive particles peeling off from the grinding wheel, which can improve the service life of the grinding wheel.
[1]J. Wang, J. Zhang, P. Feng, and Ping. Guo, “Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review”, Ceramics International, Vol.44, pp. 1227-1239, 2018.
[2]Basem. M. A. Abdo, Saqib. Anwar, and Abdualziz. El-Tamimi, “Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining”, Journal of Manufacturing Processes, Vol.43, pp. 175-191, 2019.
[3]Z. Yang, L. Zhu, B. Lin, G. Zhang, C. Ni, and T. Sui, “The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding”, Ceramics International, Vol.45, pp. 8873-8889, 2019.
[4]S. Pear, “MIM and AM: Solvent finishing of complex parts”, Metal Powder Report, Vol.75, pp. 92-94, 2020.
[5]Y. Kok, X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu, and S. B. Tor, “Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review”, Materials & Design, Vol.139, pp. 565-586, 2018.
[6]P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E. A. Jägle, “Steels in additive manufacturing: A review of their microstructure and properties”, Materials Science and Engineering: A, Vol.772, pp. 1-25, 2020.
[7]B. Lauwers, F. Bleicher, P. Tenhaaf, M. Vanparys, J. Bernreiter, T. Jacobs, and J. Loenders, “Investigation of the Process-Material Interaction in Ultrasonic Assisted Grinding of ZrO2 based Ceramic Materials”, Proceedings of 4th CIRP International Conference on High Performance Cutting, Vol.772, pp. 1-7, 2010.
[8]P. M. Mahaddalkar, and M. H. Miller, “Force and thermal effects in vibration-assisted grinding”, The International Journal of Advanced Manufacturing Technology, Vol.71, pp. 1117-1122, 2013.
[9]M. Baraheni, and S. Amini, “Mathematical model to predict cutting force in rotary ultrasonic assisted end grinding of Si3N4 considering both ductile and brittle deformation”, Measurement, Vol.156, pp. 1-9, 2020.
[10]解文法,精密研磨加工技術概說,松露文化,民國69年。
[11]B. Lawn, and R. Wilshaw, “Indentation fracture: principles and applications”, Journal of Materials Science, pp. 1049-1081, 1975.
[12]T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: A new technology for machining brittle materials”, Journal of Engineering for Industry, pp. 184-189, 1991.
[13]Z. J. Pei, D. Prabhakar, and P. M. Ferreira, “Presented at The Design for Manufacturability and Manufacture of Ceramic Components Symposium”, American Ceramic Society 96th Annual Meeting, pp. 1-13, 1994.
[14]K. Liu, X. P. Li, M. Rahman, and X. D. Liu, “A study of the cutting modes in the grooving of tungsten carbide”, The International Journal of Advanced Manufacturing Technology, Vol.24, pp. 321-326, 2004.
[15]B. Denkena, J. Koehler, and A. Moral, “Ductile and brittle material removal mechanisms in natural nacre—A model for novel implant materials”, Journal of Materials Processing Technology, Vol.210, pp. 1827-1837, 2010.
[16]B. Azarhoushang, and T. Tawakoli, “Development of a novel ultrasonic unit for grinding of ceramic matrix composites”, The International Journal of Advanced Manufacturing Technology, Vol.57, pp. 945-955, 2011.
[17]J. Kumar, “Ultrasonic Machining—a Comprehensive Review”, Machining Science and Technology, Vol.17, pp. 325-379, 2013.
[18]X. Shen, and J. Zhang, “Studies on friction and wear properties of surface produced by ultrasonic vibration-assisted milling”, The International Journal of Advanced Manufacturing Technology, Vol.67, pp. 349-356, 2013.
[19]鄭富堯,「超音波振動輔助加工玻璃材料之參數分析」,國立聯合大學,碩士論文,民國102年。
[20]O. Ohnishi, H. Suzuki, E. Uhlmann, N. Schröer, C. Sammler, G. Spur, and M. Weismiller, “Fundamentals of grinding”, pp. 133-233, 2015.
[21]X. Xiao, K. Zheng, W. Liao, and H. Meng, “Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics”, International Journal of Machine Tools and Manufacture, Vol.104, pp. 58-67, 2016.
[22]H. Kitzig-Frank, T. Tawakoli, B. Azarhoushang, “Material removal mechanism in ultrasonic-assisted grinding of Al2O3 by single-grain scratch test”, The International Journal of Advanced Manufacturing Technology, Vol.91, pp. 2949-2962, 2017.
[23]Z. Li, K. Zheng, W. Liao, and X. Xiao, “Tribological properties of surface topography in ultrasonic vibration-assisted grinding of zirconia ceramics”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol.232, pp. 4203-4215, 2017.
[24]C. Chen, J. Tang, H. Chen, and B. Zhao, “An active manufacturing method of surface micro structure based on ordered grinding wheel and ultrasonic-assisted grinding”, The International Journal of Advanced Manufacturing Technology, Vol.97, pp. 1627-1635, 2018.
[25]N. Li, J. Zhang, W. Xing, D. Ouyang, and L. Liu, “3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness”, Materials & Design, Vol.143, pp. 285-296, 2018.
[26]蔡明義、林岳峰、張嘉泰和楊家豪,「超音波振動輔助難削材加工之研究」,機械新刊,2019。
[27]X. Zhang, Z. Kang, S. Li, Z. Shi, D. Wen, J. Jiang, and Z. Zhang, “Grinding force modelling for ductile-brittle transition in laser macro-micro-structured grinding of zirconia ceramics”, Ceramics International, Vol.45, pp. 18487-18500, 2019.
[28]M. Baraheni, S. Amini, “Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding”, Ceramics International, Vol.45, pp. 10086-10096, 2019.
[29]R. Balaji, S. Sivakumar, N. Mukesh, and S. Ashish, “A Recent Investigations: Effect of Surface Grinding on CFRP using Rotary Ultrasonic Machining”, Materials Today: Proceedings, Vol.18, pp. 5209-5218, 2019.
[30]張竣傑,「超音波輔助磨削AGC玻璃加工之研究」,國立中央大學,碩士論文,民國109年。
[31]J. Jiang, S. Sun, D. Wang, Y. Yang, and X. Liu, “Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process”, International Journal of Machine Tools and Manufacture, Vol.156, pp. 1-54, 2020.
[32]X. Zhang, Lin. Yang, Y. Wang, B. Lin, Y. Dong, and C. Shi, “Mechanism study on ultrasonic vibration assisted face grinding of Hard and brittle materials”, Journal of Manufacturing Processes, Vol.50, pp. 520-527, 2020.
[33]Q. Wang, Z. Liang, X. Wang, S. Bai, S. H. Yeo, and S. Jia, “Modelling and analysis of generation mechanism of micro-surface topography during elliptical ultrasonic assisted grinding”, Journal of Materials Processing Technology, Vol.279, pp. 1-36, 2020.
[34]Y. Cao, Y. Zhu, W. Ding, Y. Qiu, L. Wang, and J. Xu, “Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy”, Chinese Journal of Aeronautics, pp. 61-75, 2021.
[35]B. Wu, B. Zhao, W. Ding, and H. Su, “Investigation of the wear characteristics of microcrystal alumina abrasive wheels during the ultrasonic vibration-assisted grinding of PTMCs”, Chinese Journal of Aeronautics, pp. 1-11, 2021.
[36]Serope Kalpakjian,機械製造,文京圖書有限公司,民國87年。