跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃和鈞
Ho-Chun Huang
論文名稱: 使用肌電訊號預測腿部角度之初步研究
指導教授: 董必正
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 肌電訊號機器學習下肢
外文關鍵詞: Electromyography, machine learning, Lower limbs
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌電訊號(electromyography)是人體的肌肉在收縮過程中所產生的生理訊號,此訊號會依人的動作不同而有不同的輸出電壓,因此可以藉由此訊號控制機械外骨骼或是估測人的意圖。
    本研究透過兩通道的表面貼面電極,搭配自製的肌電訊號截取電路,量測大腿的股直肌與股外側肌兩塊肌肉的肌電訊號,再搭配均方根、平均絕對值及波形長度,對每塊肌肉萃取出三項特徵,再通過極限梯度提升法(eXtreme Gradient Boosting, XGBoost)建立與角度之間的模型


    Electromyography is a physiological signal generated by the muscles of the human body during the contraction process. This signal will have different output voltages depending on the person's actions.Therefore, the signal can be used to control the mechanical exoskeleton or estimate the person's intention. In this study , the rectus femoris and lateral femoris muscles electromyographic signal were be measured by two-channel surfacemounted electrodes with a self-made ectromyographic signal interception circuit and extracted the feature signals with the root mean square, mean absolute value and waveform length . Then use these feature signals to establish a model with eXtreme Gradient Boosting in order to predict angle.

    中文摘要 ii ABSTRACT iii 誌謝 iv 目 錄 v 圖 目 錄 vii 表 目 錄 ix 一、緒論 1 1-1 研究背景 1 1-2 研究目的 1 1-3 文獻回顧 2 1-4 論文架構 3 二、背景與原理 4 2-1 肌電訊號之背景 4 2-2 肌電訊號產生與量測 4 2-3 肌電訊號特性 10 2-4 肌電訊號雜訊 11 三、研究方法 12 3-1 硬體設備與電路架構 12 3-1-1 角度感測器 12 3-1-2 電路架構 13 3-2 移動平均法 17 3-3 CART 原理說明 17 3-3-1 CART 生成方式 17 3-3-2 CART 剪枝 18 3-4 XGBoost 20 3-4-1 原理說明 20 3-4-2 參數說明 23 3-5 參數搜索 24 3-5-1 Grid Search 網格搜索演算法 25 3-5-2 RandomizedSearch 隨機搜索演算法 26 3-6 特徵值說明 26 四、實驗結果 28 4-1 前言 28 4-2 肌電訊號數值處理 28 4-3 特徵值與角度計算 32 4-4 使用之模型參數與模型預測結果 40 五、結論與未來展望 42 參 考 文 獻 44

    〔1〕 Gopura, R. A. R. C. and Kiguchi, K. ,” Electromyography (EMG)-signal based fuzzy-neuro control of a 3 degrees of freedom (3DOF) exoskeleton robot for human upper-limb motion assist. “Journal of the National Science Foundation of Sri Lanka, 37(4), 241-248, Dec 2009
    〔2〕 R. Raj and K.S. Sivanandan, “Comparative study on estimation of elbow kinematics based on EMG time domain parameters using neural network and ANFIS NARX model”, Journal of Intelligent & Fuzzy Systems , 32(1):1-15, November 2016
    〔3〕 A. Ameri, M. Ali Akhaee, E. Scheme and K. Englehart “Regression Convolutional Neural Network for Improved Simultaneous EMG Control”, Journal of Neural Engineering, April 2019
    〔4〕 P. Xia , J. Hu, and Y. Peng, “EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks”, Artificial Organs, 42(5):E67-E77, May 2018
    〔5〕 L. Zhang, ”An upper limb movement estimation from electromyography by using BP neural network”, Biomedical Signal Processing and Control, Volume 49, Pages 434-439, March 2019
    〔6〕 Z.Tang , K. Zhang, S. Sun , Z. Gao , L. Zhang and Z. Yang, ” An UpperLimb Power-Assist Exoskeleton Using Proportional Myoelectric Control”, Sensors, 14, 6677-6694, 2014
    〔7〕 J. Luo , C. Liu and C. Yang ,”Estimation of EMG-Based Force Using a Neural-Network-Based Approach”, IEEE Access, Vol7, 64856 – 64865, May 2019
    〔8〕 Y. Hou, J. M. Zurada,W. Karwowski,W. S. Marras, and K. Davis, ``Estimation of the dynamic spinal forces using a recurrent fuzzy neural network,‘’ IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 1, pp. 100109, Feb. 2007.
    〔9〕 F. Xiao, Y. Wang, Y. Gao, Y. Zhu and J. Zhao “Continuous estimation of joint angle from electromyography using multiple time-delayed features and random forests”, Biomedical Signal Processing and Control, Volume 39, Pages 303-311, January 2018
    〔10〕 S. Wang, Y. Gao, J. Zhao, T. Yang, Y. Zhu, “Prediction of sEMG-Based Tremor Joint Angle Using the RBF Neural Network”, 2103–2108. , 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China , Aug. 2012
    〔11〕 Z. Tang, K. Zhang, S. Sun, Z. Gao, L. Zhang and Z. Yang, “An upperlimb power-assist exoskeleton using proportional myoelectric control”, Sensors, 14 , 6677–6694 . April 2014
    〔12〕 A. Rameau MD, MPhil and MSc, “Pilot study for a novel and personalized voice restoration device for patients with laryngectomy”, Head Neck , Volume 42, Issue 5, 815-1116,December 2019
    〔13〕 L. Bi, A. Genetu Feleke and C. Guan,” A review on EMG-based motor intention prediction of continuous human upper limb motion for humanrobot collaboration” Biomedical Signal Processing and Control,51,113- 127,2019
    〔14〕 F. Zhang , PengfengLi , Z. GuangHou, ZhenLu , YixiongChen , QinglingLi and MinTan “sEMG-based continuous estimation of joint angles of human legs by using BP neural network”, Neurocomputing, Vol 78 139–148,2012
    〔15〕 L. L. Menegaldo, L. F. de O. Kin K Minato, “EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model”, BioMedical Engineering OnLine, 13:37, 2014
    〔16〕 Chien-Chih Wang, Bernard C. Jiang and Pei-Min Huang ,“The Relationship between Postural Stability and Lower-Limb Muscle Activity Using an Entropy-Based Similarity Index”, Entropy, 20(5), 320, 2018
    〔17〕 J. Chen , X. Zhang, Y. Cheng, N. Xi “Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks”, Biomedical Signal Processing and Control, 40,335–342, 2018
    〔18〕 K. Gui, H. Liu and D. Zhang, “A Practical and Adaptive Method to Achieve EMG-Based Torque Estimation for a Robotic Exoskeleton”, IEEE/ASME Transactions on Mechatronics, Volume: 24 , Issue: 2, 483 - 494 ,April 2019
    〔19〕 Z. Li, D. Zhang, X. Zhao, F. Wang, B. Zhang, D. Ye and J. Han “A Temporally Smoothed MLP Regression Scheme for Continuous Knee/Ankle Angles Estimation by Using Multi-Channel sEMG”, IEEE Access, Volume: 8, 47433 – 47444, March 2020
    〔20〕 運動星球:股四頭肌 Quadriceps。2020 年 8 月 22 日,取自 https://www.sportsplanetmag.com/article/desc/17020713371556517
    〔21〕 林哲佑:鍛鍊股二頭肌(大腿後側肌肉)。2020 年 8 月 22 日,取自 https://blog.xuite.net/charles640604/blog/213941982-
    %E9%8D%9B%E9%8D%8A%E8%82%A1%E4%BA%8C%E9%A0%AD%E8%82%8C%28%E5%A4%A7%E8%85%BF%E5%BE%8C%E5%81%B4%E8%82%8C%E8%82%89%29
    〔22〕 辦公室的橘白貓:腳踝僵硬或起跳小腿前側疼痛?脛前肌放鬆了嗎?。2020年 8月 22日,取自 https://volsports.co/blog/2018/11/21/relax/
    〔23〕 道生學堂:解剖知識丨縫匠肌。 2020 年 8 月 22 日,取自
    https://www.xuehua.us/a/5eb8a1cb86ec4d630fe5bb74?lang=zh-tw
    〔24〕 簡豪志:【筆記志療師】小腿拉筋 3 地雷,你踩雷了嗎?。2020年8 月 22 日 , 取 自 https://running.biji.co/index.php?q=news&act=info&id=101635&subtitle=%E3%80%90%E7%AD%86%E8%A8%98%E5%BF%97%E7%99%82%E5%B8%AB%E3%80%91%E5%B0%8F%E8%85%BF%E6%8B%89%E7%AD%8B%203%20%E5%9C%B0%E9%9B%B7%EF%BC%8C%E4%BD%A0%E8%B8%A9%E9%9B%B7%E4%BA%86%E5%97%8E%EF%BC%9F
    〔25〕 小小整理網站 SMALLCOLLATION:腓骨長肌 (Fibularis longus muscle) 。 2020 年 8 月 22 日 , 取 自 https://smallcollation.blogspot.com/2013/02/anatomy-muscle fibularislongus-muscle.html#gsc.tab=0
    〔26〕 小小整理網站 SMALLCOLLATION:半腱肌(Semitendinosus muscle)。 2020 年 8 月 22 日 , 取 自
    https://smallcollation.blogspot.com/2013/02/anatomy musclesemitendinosus-muscle.html#gsc.tab=0
    〔27〕 Carlo J. De Luca ,“SURFACE ELECTROMYOGRAPHY:DETECTION
    AND RECORDING”,DELSYS,2002
    〔28〕 H 千面:CART 分類回歸樹通俗理解。2020 年 8 月 22 日,取自 https://youtu.be/qrDzZMRm_Kw
    〔29〕 itread01:機器學習爬大樹之決策樹(CART 與剪枝)。2020 年 8月22日,取自 https://www.itread01.com/content/1547092682.html
    〔30〕 Tianqi Chen and Carlos Guestrin:XGBoost: A Scalable Tree Boosting System. 2020 年 8 月 22 日 , 取 自 https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf
    〔31〕 StatQuest with Josh Starmer:XGBoost Part 3: Mathematical Details.2020年 8月 22日,取自 https://www.youtube.com/watch?v=ZVFeW798-2I
    〔32〕 DataScience.LA:XGBoost A Scalable Tree Boosting System June 02,2016. 2020 年 8 月 22 日 , 取 自
    https://www.youtube.com/watch?v=Vly8xGnNiWs
    〔33〕 XGBoost: XGBoost Documentation. 2020 年 8 月 22 日,取自https://xgboost.readthedocs.io/en/latest/index.html
    〔34〕 程式前沿:xgboost 入門與實戰(原理篇)。2020 年 8月 22日,取自https://codertw.com/%E7%A8%8B%E5%BC%8F%E8%AA%9E%E8%A
    8%80/635146/
    〔35〕 Bergstra J , Bengio Y ,“Random Search for Hyper Parameter Optimization[J]”, Journal of Machine Learning Research, 13 , 281-305 ,2012.

    QR CODE
    :::