| 研究生: |
艾亞傑 Eduardo Enrique Arias |
|---|---|
| 論文名稱: |
評估倂網型太陽光電電廠在宏都拉斯的可行性 Pre-feasibility assessment of a grid-connected hotovoltaic power plant in Honduras |
| 指導教授: |
吳俊諆
Jiunn-Chi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 國際永續發展碩士在職專班 International Environment Sustainable Development Program |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 宏都拉斯 、太陽能 、RETSreen 、太陽光電 、可行性評估 |
| 外文關鍵詞: | Honduras, Solar Energy, RETSreen, Feasibility Assessment, Photovoltaic |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的目地在以技術、環境和經濟面向來評估在宏都拉斯設置併網型太陽光電(PV)電廠的可行性。本篇採用美國航空太空總署的地面氣象和太陽能計畫(SSE)和太陽能和風能資源評估計畫(SWERA)來蒐集在宏都拉斯的月平均每日總日照量和日照時數的數據。此日照資源可作為建議設置一座1.13 MW的併網型PV電廠的發電來源。
建議安裝PV電廠地點為宏都拉斯內最佳太陽能潛力的區域(北緯13°18'',西經87°12''),此地區平均日照量為5.62 kWh/d/m2,平均日照時數為7.6 h/d。估計PV電廠需設置4,810個PV模組,佔地約0.96公頃。本文採用丸岡提出的方法(2008)來選擇目前市場最符合成本效益的PV模組。
本文用RETScreen模擬軟體,透過發電量性能分析、財務分析和溫室氣體排放量分析,以評估PV電廠的可行性。分析結果顯示容量因子為23.5%的電廠的年發電量為2,329 MWh。此外本文也做了財務指標評估,包括內部報酬率(IRR)、靜態投資回收期(SPP)、淨現值(NPV)、效益費用比(B-C ratio)和能源生產成本(EPC)都指出在宏都拉斯發展PV電廠的有利條件。敏感度分析顯示電力輸出率是影響本計劃穫利能力最敏感的變數,為了讓本計劃具有相當投資吸引力,建議購回電價為US$ 0.242/kWh。從環境保護觀點來看,此PV電廠在宏都拉斯一年的發電量可減少1,855噸的CO2,相當於減少4,314桶原油的消耗量。
The goal of this thesis is to evaluate the pre-feasibility of a grid-connected PV power plant in Honduras, by considering the well-being of the technical, economical and environmental aspects of the project. This thesis utilizes monthly average daily global solar radiation and sunshine-hour data from NASA Surface Meteorology and Solar Energy (SSE) through the Solar and Wind Energy Resource Assessment Programme (SWERA) in Honduras. Evaluation of PV systems as an electricity generation source for Honduras was assessed utilizing a proposed 1.13 MW grid-connected PV power plant.
It is proposed to locate the PV power plant within the region with the best solar energy potential in Honduras (13°18'' North and 87°12'' West). This region has an average global solar radiation value of 5.62 kWh/day/m2, and average sunshine-hour value of 7.6 hours/day. It is estimated that the potential PV power plant would require 4,810 PV modules, covering an approximate area of 0.96 hectares. Methodology described in Maruoka (2008) is adopted in this study to select the most cost-effective PV module from those available on the market.
The pre-feasibility assessment of the proposed PV power plant is evaluated using RETScreen simulation software, through the performance of an energy production analysis, financial analysis and GHG emissions analysis. Initial results showed an annual electricity generation of 2,329 MWh, with a capacity factor of 23.5%. Financial indicators calculated, such as internal rate of return, simple payback period, net present value, benefit-cost ratio and energy production cost, indicated favorable conditions for the development of a PV power plant in Honduras. The sensitivity analysis shows that electricity export rate is the most sensitive variable which affects the profitability of the project. A feed in tariff rate of US$ 0.242/kWh is recommended to make the project economically and financially attractive. From the environmental point of view, it was found that a minimum of 1,855 tons of CO2, equivalent to 4,314 barrels of not consumed crude oil, can be avoided annually in Honduras by commissioning of the proposed PV power plant.
References
Abdallah, S. 2004. The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics. Energy Conversion and Management 45 (2004) 1671-1679.
Affordable Solar Group. Solar Photovoltaic. Available at: <http://www.affordable-solar.com> (accessed on: March, 2011).
Al-Badi, A., et al. 2011. Economic perspective of PV electricity in Oman. Energy 36 (2011) 226-232.
Aste, N. and Del Pero, C. 2010. Technical and economic performance analysis of large-scale ground-mounted PV plants in Italian context. Progress in Photovoltaics: research and applications 18 (2010) 371-384.
Banco Central de Honduras (BCH). 2010. Memoria Anual. Available in Spanish at: <http://www.bch.hn/download/memoria/memoria_anual_2009.pdf>.
Bayod-Rújula, A., et al. 2011. Environmental assessment of grid connected photovoltaic plants with 2-axis tracking versus fixed modules systems. Energy 36 (2011) 3148-3158.
Central Intelligence Agency (CIA). 2011. The world Factbook. Available at: https://www.cia.gov/library/publications/the-world-factbook/
Cunow, E., et al. 2001. The megawatt solar roof at the new Munich Trade Fair Centre - an advanced and successful new concept for PV plants in the megawatt range. Solar Energy Materials & Solar Cells 67 (2001) 459-67.
Duffie, J., and Beckman, W. 1991. Solar Engineering of Thermal Processes, second edition. Publishers: John Wiley & Sons.
Economic Commission for Latin America (ECLAC). 2010a. Central American: Statistic of the Electricity Subsector. Available in Spanish.
Economic Commission for Latin America (ECLAC). 2010b. Central American: Statistic of the Hydrocarbons. Available in Spanish.
EL-Shimy, M. 2009. Viability analysis of PV power plants in Egypt. Renewable Energy 34 (2009) 2187-2196.
Empresa Nacional de Energia Electrica (ENEE). 2010. Statistics 2009. Available in Spanish at: <http://www.enee.hn/>.
Energy Sector Management Assistance Program (ESMAP). 2010. Honduras: Power Sector Issues and Options. Report 333/10. Available at: <http://www.esmap.org/esmap/>
European Climate Exchange. 2011. EXC annual report. Available at: <https://www.theice.com/homepage.jhtml>
Evans, D.L. 1981. Simplified method for predicting photovoltaic array output. Solar energy 27,6 (1981) 555-560.
Flores, M., et al. 2010. Sustainable energy policy in Honduras: Diagnosis and challenges. Energy Policy 39 (2011) 551-562.
Harder, E. and MacDonald J. 2011. The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates. Renewable Energy 36 (2011) 789-796.
Hrayshat, E. 2009. Viability of solar photovoltaics as an electricity generation source for Jordan. Renewable Energy 34 (2009) 2133-2140.
International Energy Agency (IEA). 2009a. Trends in Photovoltaic Applications: Survey Report of Selected IEA Countries between 1992 and 2009. IEA-PVPS T1- 19: 2010.
International Energy Agency (IEA). 2009b. Technology Roadmap, Solar Photovoltaic Energy.
International Energy Agency (IEA). 2009c. Energy from the Deserts. Very Large Scale Photovoltaic Systems: Socio-economic, Financial, Technical and Environmental Aspects.
International Energy Agency (IEA). 2009d. Energy from the Deserts. Feasibility of Very Large Scale Photovoltaic Generation (VLS-PV) Systems.
Ito, M., et al. 2003. A preliminary study on potential for very large scale photovoltaic power generation (VLS-PV) system in the Gobi desert from economic and environmental viewpoints. Solar Energy Materials & Solar Cells 75 (2003) 507-17.
Kurokawa, K., et al. 2002. A cost analysis of very large scale PV (VLS-PV) system on the world deserts. Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE.
Li, Z., et al. 2011. Optical performance of vertical single-axis tracked solar panels. Renewable Energy 36 (2011) 64-68.
Maruoka,Y. 2008. Method for Determining Cost-Effectiveness and Price of Solar Modules. 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA., 2008.
Millennium Energy LLC. 2001. Technical and Economic Feasibility Assessment of a Bright field Photovoltaic Power Plant at Miramar Landfill.
Ministry of Natural Resources and Environment (SERNA). 2009a. Energy Prospective of Honduras. Available in Spanish.
Ministry of Natural Resources and Environment (SERNA). 2009b. National Energy Balance. Available in Spanish.
Ministry of Natural Resources and Environment (SERNA). 2009c. Base de datos de proyectos: Dirección Nacional de Energia (DGE).
Mondal, A. and Islam, S. 2011. Potential and viability of grid-connected solar PV system in Bangladesh. Renewable Energy 36 (2011) 1869-1874.
Parsons Brinckerhoff Australia. 2008. Photovoltaic Feasibility Assessment. ActewAGL and ACT Government.
Poponi, D. 2003. Analysis of diffusion paths for photovoltaic technology based on experience curves. Solar Energy 74 (2003) 331-40.
PVinsights. 2011. Weekly and Monthly Snapshots. Available at: <http://pvinsights.com> (accessed on: March, 2011).
PVresources. 2008. Annual Review. Available at: <http://www.pvresources.com> (accessed on: March, 2011).
Ramadhan, M. and Naseeb, A. 2010. The cost and benefit analysis of implementing photovoltaic solar system in the state of Kuwait. Renewable Energy (2010) 1-5.
Rehman, S., et al. 2007. Cost of solar energy generated using PV panels. Renewable and Sustainable Energy Reviews 11 (2007) 1843-1857.
Smil, V. 2010. Power Density Primer: Understanding the Spatial Dimension of the Unfolding Transition to Renewable Electricity Generation (Part IV-New Renewable Electricity Generation). Master Resource: a free energy blog. Available at: <http://www.masterresource.org/category/energy-density/>
So, J., et al. 2006. Performance results and analysis of large scale PV system. Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion.
Solarbuzz. 2010. Marketbuzz 2011. Available at: <http://www.solarbuzz.com/> (accessed on: March, 2011)
Solar and Wind Energy Resource Assessment (SWERA). 2008. Honduras: Energy Report. Available in Spanish at: <http://swera.unep.net/>
United States Central Intelligence Agency (CIA). 2011. World Fact Book 2011. Available at: <http://hdr.undp.org/en/media/HDR_2010_EN_Complete_reprint.pdf>
United Nations Development Programme (UNDP). 2010. Human Development Report 2009. Available at: <http://hdr.undp.org/en/media/HDR_2009_EN_Complete.pdf>
Wenham, S., et al. 2007. Applied Photovoltaics, Second Edition. UK and USA: Earthscan Publishers.