| 研究生: |
吳冠漢 Guan-Han Wu |
|---|---|
| 論文名稱: |
緩衝材料於近場環境下之體積穩定性研究 |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 乾縮 、緩衝材料 、回脹性質 、壓縮 |
| 外文關鍵詞: | buffer material, near field, compaction, volumetric shrinkage, bentonite |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對高放射性廢棄物最終處置場之緩衝材料,探討其近場環境可能影響緩衝材料功能的各種因素,包含緩衝材料受含鹽溶液以及與混凝土反應使pH值改變對回脹潛能造成的影響、廢棄物包件底部的緩衝材料長期處於高荷載狀態下產生的沈陷效應及地下水入侵後造成的體積改變、緩衝材料受廢棄物包件衰變熱作用下產生之乾縮
行為對材料緩衝性質之影響等。
本研究試驗材料為台東樟原的日興土以及美國Wyoming州的BH膨潤土,試驗結果顯示(1)BH膨潤土於各種狀態下之回脹潛能皆遠高於日興土;(2)BH膨潤土於含鹽溶液中回脹應變量隨著溶液濃度及離子價數增加而降低;(3)BH膨潤土回脹應變量隨著酸性或鹼性增加而降低;(4)日興土於高壓荷載狀態下產生沈陷行為,BH膨潤土於高壓荷載狀態下產生解壓回脹效應,壓縮後之兩種黏土材料於含鹽溶液中產生微量回脹行為,回脹應變量隨著溶液濃度及離子價數增加而降低,日興土壓縮後回脹應變量除了在極端pH值溶液中回脹量略微提升,其餘回脹量皆隨著酸性或鹼性的增加而降低;(5)兩種緩衝材料於初始含水量下之乾縮行為並不受不同乾燥環境溫度的影響,且不會產生乾縮裂縫;(6)日興土與BH膨潤土提高含水量至臨界值後可能會因乾燥而產生裂縫。
Abstract
Compacted bentonites are attracting greater attention as buffer material for deep geological repository of high-level radioactive waste. Properties of buffer material would be affected by near-field environment. The objective of this research is to find out the volumetric stability of buffer material under near field conditions. The following scenarios are experimentally simulated, including groundwater intrusion, loadings from waste package, and the decay heat from waste package.
The buffer materials used in this study are Zhisin clay produced in eastern Taiwan and Black Hill (BH) bentonite from Wyoming. Experimental results show that: (1) the swelling potential of BH bentonite is higher than that of Zhisin clay; (2) the swelling strain of buffer material decreases in the presence of electrolyte in the pore fluid, and the swelling strains in NaCl solution are higher than that in CaCl2 solution; (3) compaction settlement of Zhisin clay increases with increasing compaction pressure; (4) swelling strain upon immersion in solution after compaction varies with groundwater chemistry; (5) volumetric shrinkage of bentonite in its initial water content was not influenced by drying temperature and desiccation cracking was not observed; (6) the shrinkage upon drying could result in cracks for bentonite prepared at high water contents.
參考文獻
王欣婷,「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
王明光,環境土壤化學,五南圖書出版,(2001)。
田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(Ι)」,行政院原子能委員會委託研究計劃研究報告,國立中央大學土木系,(2001)。
莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44-54頁,(2000)。
核能研究所,「我國用過核燃料深層地質處置概念討論會」,行政院原子能委員會核能研究所,(2002)。
卓智聰,「放射性廢料處置場中緩衝材料之物理特性及配方研究」,國立中央大學土木工程研究所碩士論文,中壢 (1999)。
陳文泉、黃偉慶「深地層處置緩衝材料熱-水力機械-化學耦合作用探討」,核研季刊,第四十二期,第38-48頁,(2002)。
陳宏達,「溶出參數對夯實泥岩襯裡回脹及滲透行為之影響」,博士論文,國立成功大學環境工程研究所,台南 (2002)。
陳顧齡,「酸鹼度和溫度對鍶銫在膨潤土中吸附與擴散行為之影響」,國立清華大學原子科學系碩士論文,新竹,(1996)。
許俊男,「在模擬地下水中省產黏土礦物對鍶銫核種的吸附機制研究1/1」,放射性物料管理局八十五年度專題研究計劃期末報告,(1996)。
黃偉慶、葉佐仁、盧俊鼎,「放射性廢料處置場回填材料之工程性質」,核子科學,第三十八卷,第二期,第107-118頁,(2001)。
黃慈君,「溫度及鹽水濃度對壓實膨潤土回脹性質之影響」,碩士論
文,國立中央大學土木工程研究所,中壢 (2003)。
譚志豪,「黏土壓縮與壓密行為之研究」,博士論文,國立中央大學土木工程研究所,中壢 (2002)。
謝仁杰(2002),「放射性廢料最終處置緩衝材料壓製技術及乾縮行為研究」,大專學生參與專題研究計畫研究成果報告,計畫編號:NSC91-2815-C-008-027-E,(2002)。
趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社,北京,(1990)。
萬鑫森,基礎土壤物理學,茂昌圖書,(1991)。
Abdullah, W.S., Alshibli, K.A., and Al-Zou’bi, M.S. (1999). “Influence of pore water chemistry on swelling behavior of compacted clays.”
Applied Clay Science. Vol.15, pp. 447-462.
Avner, M., and Petteri, P. (1996), “Chemical and mineralogical aspects of water-bentonite interaction in nuclear fuel disposal conditions,”
Technical Research Centre of Finland Espoo.
ASTM, (1990), “Designation D 427-83: Standard Test Methods for Shrinkage Factors of Soils.” Annual Book of ASTM Standard, Vol.
04.08, ASTM, pp. 105-107.
ASTM, (2002), “Designation D 1188-96: Standard Test Methods for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Sample.” Annual Book of ASTM Standard, Vol. 04.03,
ASTM, pp. 1-7.
Baker, J. C., Grabowska-Olszewska, B., and Uwins, P.J.R. (1995), “ESEM study of osmotic swelling of bentonite from Radzionkow
Poland,” Applied Clay Science, Vol. 9, pp. 465-469.
Barbour, S. L., and Fredlund, D. G. (1989), “Mechanisms of osmotic flow and volume change in clay soils,” Canadian Geotechnical Journal,
Vol. 26, pp. 551-562.
Boundoin, P., Gary, D., Certes, C., Serres, C., Alonso, J., Luhtmann, L., Martens, K. H., Dadd, D., Marivoet, J., and Vieno, T. (2000), “Spent fuel disposal performance assessment (SPA) project,” EUR 19132.
Cho, W.J., Lee J.O., and Kang C.H. (2000). ”Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository.” Annals of Nuclear
Energy, Vol. 27, pp. 1271 -1284.
Chorom, M., and Rengasamy, P. (1996), “Effect of heating on swelling and dispersion of different cationic forms of a smectite,” Clays and
Clay Minerals, Vol. 44, No. 6, pp. 783-790.
Chen, J. S., Cushman . J. H. & Low, P. F. (1990), “Rheological behaviour of Na-montmorillonite suspensions at low electrolyte concentration,” Clays and Clay Minerals, Vol. 38, No. 1, pp. 57-62.
Di Maio, C. (1996), “Expoure of bentonite to salt solution: osmotic and mechanical effects,” Geotechnique, Vol. 46, No. 4, pp. 695-707.
Egloffstein, T. (1996), Bentonite as sealing material in geosynthetic clayliners, geosynthetics: applications, design, and construction, De Groot, M. B., Den Hoedt, G., and Termaat, R. J., (eds), pp. 799~806.
Fang, H. (1997), Introduction to Environmental Geotechnoiogy, CRC Press, pp. 166-175.
Gholamreza, M., and Roy, E. O. (1971), “Mechanisms controlling the permeability of clay,” Clays and Clay Minerals, Vol. 19, pp.
151-158.
Guven, N. (1990), “Longevity of bentonite as buffer material in a nuclear-waste repository,” Engineering Geology, Vol. 28, pp.
233~247.
H12. (1999), “Project to Establish Technical Basis for HLW Disposal in Japan,” Japan Nuclear Cycle Development Institute. Vol. IV, pp.
99-101.
IAEA. (1985). Deep Underground Disposal of Radioactive Waste:Near-Field Effects, Technical Reports Series No.251.
JNC(1999). H12 Project to Establish Technical Basis for HLW Disposal in Japan, Supporting Report 1: Geological Environment in Japan, Japan Nuclear Cycle Development Institute, JNC TN1400 99-011.
Jo, H. Young., Takeshi, K., Craig, H. B., and Tuncer, B. E. (2001), “Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions, ”Journal of Geotechnical and Geoenviromental Engineering, Vol. 127, No. 7,
pp. 557~567.
Johnson, L.H. (1996). The Disposal of Canadian’s Nuclear Fuel Waste: A Study of Postclosure Safety of In-room Emplacement of Used Canadian Fuel in Copper Containers in Permeable Plutonic Rock, Volume 2: Vault Model, Atomic Energy of Canadian Limited, AECL-11494-2.
Johnston, R. M. (1983), “The conversion of smectite to illite in hydrothermal system,” A literature review . Atomic Energy of
Canada Limited, AECL-7792, p. 27.
Komine, H., and Ogata, N. (1994), “Experimental study on swelling characteristics of compacted bentonite.” Canadian Geotechnical Journal, Vol. 31, pp. 478-490.Komine, H., and Ogata, N. (1999). “A trial design of buffer materials from the viewpoint of self-sealing.” Proceeding of Radioactive Waste Management and Environmental Remediation, ASME.
Kashir, M. and Yanful, E. (2001). “Hydraulic Conductivity of Bentonite Permeated with Acid Mine Drainage.” Canadian Geotechnical Journal, Vol. 38, pp. 1034-1048.
Madsen, F.T., and Muller-Vonmoos, M.(1989), “The swelling behavior of clays.” Applied Clay Science, Vol. 4, pp. 143-156.
Marcial, D., Delage, P., and Cui,Y. J. (2002), “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol.
39, pp. 812-820.
Mesri, G., and Olson, R. E. (1971), “Consolidation characteristics of
montmorillonite,” Geotechnique, Vol. 21, No. 4, pp. 341-352.
Mitchell, J. K. (1991), “Conduction phenomena: from theory to geotechnical practice,” Geotechnique, Vol. 41, No. 3, pp. 299-340.
Norrish, K., and Quirk, J. (1954), “Crystalline swelling of montmorillonite, use of electrolytes to control swelling,” Nature,
Vol. 173, pp. 255-257.
Oscarson, D. W., Dixon, D. A., and Onofrei, M. (1997), Aspects of Clay/ Concrete Interactions, Atomic Energy of Canada Limited, AECL
-11715.
Radhakrishna, H. S., Chan, H. T., Crawford, A. M., and Lau, K. C. (1989), “Thermal and physical properties of candidate buffer-backfill materials for a nuclear fuel waste disposal vault.” Canadian
Geotechnical Journal, Vol. 26, pp. 629-639.
Sivapullaiah, P. V., Sridharan, A., and Stalin V. K. (1996). ”Swelling behaviour of soil-bentonite mixture.” Canadian Geotechnical
Journal, Vol. 33, pp.808-814.
SKB. (1999). Deep repository for spent nuclear fuel SR97:Post-closure safety, SKB TR99-06. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Tay, Y. Y., Stewart, D. I., and Cousens, T.W., (2001), “Shrinkage and desiccation cracking in bentonite-sand landfill liners,” Engineering
Geology 60, pp. 263-274.
Terzaghi, K., and Pack, R. B., (1967), “Soil Mechanics in Engineering Practice.” 2nd ed., Wiley, New York.