| 研究生: |
劉珈妤 Chia-Yu Liu |
|---|---|
| 論文名稱: |
因子投資與固定指數年金投資策略之研究 |
| 指導教授: |
楊曉文
Sheau-Wen Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 因子投資 、固定指數年金 |
| 外文關鍵詞: | fixed index(ed) annuity, Heston Nandi GARCH |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要比較用主成份分析與波動度建構出來的指數在連結固定指數年金上是否會比單純連結大盤的報酬來的優越,並利用Heston Nandi GARCH 模型去模擬波動度,計算固定指數年金的參與率,讓保險公司在成本控管與避險時,不會受保戶選擇固定利率或連結指數報酬上有太大影響。結果顯示固定指數年金連結主成份建構出來的指數,能比連結大盤或波動度建構出來的指數累積報酬更好。且在給定信賴水準下,主成份建構指數的條件尾端期望風險相對於波動度建構出來的指數是較小的。證實多因子配置在2011年至2018年間比僅用單一因子波動度建構來的有效。
The purpose of this study is to investigate whether the multi-factor index may perform better than the simple volatility-weighted index. The Heston Nandi GARCH model is adopted to simulate the volatility, and then calculate the participation rate of Fixed index(ed) annuities(FIAs). The insurance company can utilize the participation rate to control the cost and hedge the risk for FIAs. The results show that the index conducted by the Principal component analysis (PCA) perform better than market weight index and volatility weight index. In addition, the conditional tail expectations of the index conducted by PCA are smaller than other two indices given the confidence interval, which shows that factor index is more efficient than volatility index and market weight index.
楊踐為、李家豪和類惠貞,「應用時間序列法建構台灣證券市場之預測交易模型」,中華管理評論國際學報,第十卷第三期,2007年8月
賀蘭芝,“因子投資(Factor Investing)再探”,J.P. Morgan 銀行「43rd 官方準備管理研討會」,2017年8月
劉宗聖等人,「Smart Beta ETF投資與應用」,商訊文化,2017年
Clifford S. Asness, Andrea Frazzini, and Lasse H. Pedersen, “Quality Minus Junk”, 2014, Available at : http://www.econ.yale.edu/~shiller/behfin/2013_04-10/asness-frazzini-pedersen.pdf
Chiu, Y.-F., Hsieh, M.-H., Tsai, C.-H., & Chen, W.-K, “Valuation of Ratchet Equity-Indexed Annuities.”, Journal of Financial Studies, 20(4), 89., 2011.
Eugene F. Fama and Kenneth R. French, “Common risk factors in the returns on stocks and bonds”, Journal of Financial Economics. 33 , 1993, p3-56
Tzee-man Chow, Jason C.Hsu, Li-Lan Kuo, and Feifei li, “A Study of Low-Volatility Portfolio Construction Methods”, The Journal of Portfolio Management, July 2014.
J. Latin, D. Carroll, P.E. Green, “Analyzing Multivariate Data”, Duxbruy, 2003.
A. C. Rencher, “Multivariate Statistical Inference and Applications”, John Wily and Sons, 1998.
莊永丞,「美國固定指數年金(Fixed Indexed Annuities)之規範與簡介」, 中華民國證券投資信託暨顧問商業同業公會, 2013.
Kyle Winkfield , Jeremy Shipp , “ Fixed Index Annuity Analysis And Commentary”, O’Dell, Winkfield, Rosemen & Shipp, LLC, 2015.
Guojun Gan, Emiliano A. Valdez, “ Valuation of Large Variable Annuity Portfolios: Monte Carlo Simulation and Benchmark” (April 21, 2017). Available at SSRN: https://ssrn.com/abstract=2961818
OECD (2016), Life Annuity Products and Their Guarantees, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264265318-en
Serena Tiong, “Valuing Equity-Indexed Annuities”, North American Actuarial Journal, 4 (4) , 2000.
Hardy, M. “Ratchet equity indexed annuities.” Paper presented at the 14th Annual International AFIR Colloquium., 2004.
Chiu, Y.-F., Hsieh, M.-H., Tsai, C.-H., & Chen, W.-K. “Valuation of Ratchet Equity-Indexed Annuities.” Journal of Financial Studies, 20(4), 89. ,2011.
Ming-hua Hsieh. “Valuation of variable annuity contracts with cliquet options in Asia market.” Proceedings of the 2008 Winter Simulation Conference, 2008
Lin, X & Tan, Ken. “Valuation of Equity-Indexed Annuities Under Stochastic Interest Rate.” North American Actuarial Journal. 7. 10.1080/10920277.2003.10596119. , 2003.
Simpa Baiye. “Hybrid Indice in Fixed Indexed Annuities: The New Wave” , Society Of Actuaries, Product Development Section 92, 2015
X.Sheldon Lin and Ken Seng Tan, “ Valuation of Equity-Indexed Anuities Under Stochastic Interest Rate”, North American Actuarial Journal, 2003
韓傳祥、張藝馨與游雅媚,「隨機模型下波動率的資訊內容:以臺灣為例」, 臺灣期貨與衍生性商品學刊,2011
涂登才、劉祥熹,「跳躍擴散與隨機波動模型下台指選擇之評價----快速傅立葉轉換之應用」,管理與系統學刊,2012
謝明華、陳可為與邱于芬,「固定智慧指數連動年金」,學位論文,2017
Steven L. Heston and Saikat Nandi, “A Closed-Form GARCH Option Pricing Model”, Federal Reserve Bank of Atlanta, Working paper 97-9, Nov.1997
Ricardo Crisotomo, An Analysis of the Heston Stochastic Volatility Model: Implementation and Calibration using Matlab, 2014
Tak Kuen Siu, Howell Tong and Hailiang Yang, ”On Pricing Derivatives under GARCH Models: A Dynamic Gerber-Shiu’s Approach”, North American Actuarial Journal, 8 (3)(3), 2004
Peter Christoffersen, Kris Jacobs, “ Which GARCH Model for Option Valuation?”, Management Science, Vol.50, No.9 (Sep., 2004), pp. 1204-1221
周恆志、陳達新和巫春洲,「Gram – Charlier GARCH 選擇權演算法的評價與避險績效」,管理與系統, 14, 1, 95-119頁, 2007.
Available at :http://www.dataguru.cn/article-11745-1.html