| 研究生: |
許家福 Chia-Fu Hsu |
|---|---|
| 論文名稱: |
電激發有機偏極子元件之研究 electrically pumped organic polariton device |
| 指導教授: |
張瑞芬
Jui-Fen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 極化子 、微共振腔 、有機強耦合 、電激發 、光激分離 |
| 外文關鍵詞: | polariton, microcavity, strong coupling, electrically pumping, intra-cavity pumping |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為研究intra-cavity pumping機制的電激發有機偏極子元件。intra-cavity pumping共振腔架構的設計概念為結合有機強耦合高吸收材料與弱耦合發光OLED,先產生弱耦合OLED的電激發光,再激發出共振腔偏極子能態的發光。其中高吸收材料與OLED以一介電層隔絕,使電流只通過OLED部份,因此不受高吸收材料電性所影響。相較於一般直接以電激發高吸收材料產生偏極子能態放光,intra-cavity pumping架構可同時針對弱耦合OLED的發光效率與有機強耦合材料的吸收特性分別進行優化,在有機材料的選擇上更具彈性與選擇性,偏極子能態的發光效率也更高。
本論文電激發有機偏極子元件以DEDOC作為高吸收強耦合材料與DCJTB紅光OLED作為弱耦合發光源,在優化的元件製程條件之下可達到120 meV的拉比分裂及大於1 %的外部量子效率,為目前電激發有機偏極子元件最高的發光效率。此研究結果有助於未來發展高效率電激發強耦合元件和低閥值偏極子雷射。
In this thesis, the electrically pumped organic polariton device by intra-cavity pumped was studied. The intra-cavity pumped microcavity consists of high absorption material and weak coupling OLED. In the intra-cavity pumped microcavity, a specific polariton mode is pumped by OLED emission and then emit light through the recombination process. In the microcavity, the high absorption layer and OLED are isolated by a dielectric layer such that the current only pass through the OLED.Thus Thus, the performance of the device would not be affected by the electrical property of the high absorption material. In comparison with the traditional structure, which directly pumps the high absorption material, the intra-cavity pumped device has multiple selectivities of organic material and high quantum efficiency because the emission efficiency of OLED and the high absorption material can be optimized respectively.
In this thesis, the electrically pumped organic polariton device was fabricated with DEDOC high absorption material and DCJTB red OLED pumping source with Rabi splitting of 120 meV and more than 1% EQE, which is the highest emission efficacy of electrically pumped organic polariton device. This research will promote the development of high efficiency electrically pumped organic polariton devices as well as low threshold polariton laser.
參考文獻
1. H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics 82(2010).
2. M. N. C. Weisbuch, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69(1992).
3. C. Schneider et al., An electrically pumped polariton laser. Nature 497(2013).
4. S. Kéna-Cohen, S. R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics 4 (2010).
5. D. M. Coles et al., Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat Mater 13 (2014).
6. N. Christogiannis et al., Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED. Advanced Optical Materials 1(2013).
7. G. M. Akselrod, E. R. Young, M. S. Bradley, V. Bulovic, Lasing through a strongly-coupled mode by intra-cavity pumping. Opt Express 21(2013).
8. J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, A. Nurmikko, Strong coupling in a microcavity LED. Phys Rev Lett 95(2005).
9. 李正中, 薄膜光學與鍍膜技術. 第七版,藝軒圖書出版社,新北市(2012).
10. D. M. Coles, P. Michetti, C. Clark, A. M. Adawi, D. G. Lidzey, Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity. Physical Review B 84(2011).
11. D. M. Coles et al., Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities. Advanced Functional Materials 21(2011).
12. R. J. Holmes, S. R. Forrest, Strong exciton–photon coupling in organic materials. Organic Electronics 8(2007).
13. A. I. Tartakovskii et al., Raman scattering in strongly coupled organic semiconductor microcavities. Physical Review B 63(2001).
14. P. A. Hobson et al., Strong exciton–photon coupling in a low-Q all-metal mirror microcavity. Applied Physics Letters 81(2002).
15. D. G. Lidzey et al., Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation. Physical Review B 65(2002).
16. V. M. Agranovich, M. Litinskaia, D. G. Lidzey, Cavity polaritons in microcavities containing disordered organic semiconductors. Physical Review B 67(2003).
17. L. G. Connolly et al., Strong coupling in high-finesse organic semiconductor microcavities. Applied Physics Letters 83(2003).
18. S. Ceccarelli, J. Wenus, M. S. Skolnick, D. G. Lidzey, Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities. Superlattices and Microstructures 41(2007).
19. J. Chovan, I. E. Perakis, S. Ceccarelli, D. G. Lidzey, Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities. Physical Review B 78 (2008).
20. D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, P. G. Lagoudakis, Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities. Physical Review B 88(2013).
21. S. K. Rajendran et al., Direct evidence of Rabi oscillations and antiresonance in a strongly coupled organic microcavity. Physical Review B 91(2015).
22. M. Slootsky, Y. Zhang, S. R. Forrest, Temperature dependence of polariton lasing in a crystalline anthracene microcavity. Physical Review B 86(2012).
23. M. Razeghi et al., Exciton-polariton Bose-Einstein condensation with a polymer at room temperature. 9370(2015).
24. G. M. Akselrod et al., Reduced lasing threshold from organic dye microcavities. Physical Review B 90(2014).
25. J.-H. Song, Y. He, A. V. Nurmikko, J. Tischler, V. Bulovic, Exciton-polariton dynamics in a transparent organic semiconductor microcavity. Physical Review B 69(2004).
26. Bertie, J.E. and S.L. Zhang, Infrared intensities of liquids. IX. The Kramers-Kronig transform, and its approximation by the finite Hilbert transform viafast Fourier transforms. Canadian Journal of Chemistry, 1992. 70(2)
27. Lucarini, V., Kramers-Kronig relations in optical materials research. 2005:Springer.
28. Nitsche, R. and T. Fritz, Determination of model-free Kramers-Kronigconsistent optical constants of thin absorbing films from just one spectralmeasurement: Application to organic semiconductors. Physical Review B,2004. 70(19).
29. 林成之, " 有機染料分子薄膜之光電特性研究" ,碩士,光電科學與工程學系,國立中央大學,桃園市 (2014).
30. 呂揚翰, "有機強耦合共振腔元件設計與發光量測系統架設之研究", 碩士,光電科學與工程學系,國立中央大學,桃園市 (2015).
31. 何彥璋, "強耦合有機微共振腔之設計與研究" ,碩士,光電科學與工程學系,國立中央大學,桃園市 (2015).
32. 戴振全, "即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究", 碩士,光電科學與工程學系,國立中央大學,桃園市 (2016).
33. 吳峻志, "高效率紅光及高效率單層全波段白光有機電激發光元件之研究",碩士,光電工程研究所, 國立中山大學,高雄市(2008)
34. P. Michetti, G. C. La Rocca, Exciton-phonon scattering and photoexcitation dynamics inJ-aggregate microcavities. Physical Review B 79(2009).
35. P. M. G. C. L. Rocca, Simulation of J-aggregate microcavity photoluminescence. PhysRevB 77 (2008).
36. P. Michetti, G. C. La Rocca, Polariton states in disordered organic microcavities. Physical Review B 71(2005).
37. P. Michetti, G. C. La Rocca, Polariton-polariton scattering in organic microcavities at high excitation densities. Physical Review B 82(2010).