跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林士傑
Shih-Chieh Lin
論文名稱: 以類神經網路為基礎之教導機械人模仿人類動作的機制
A Neural-Network-based Mechanism for Teaching Robots to Imitate Human Actions
指導教授: 蘇木春
Mu-Chun Su
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 76
中文關鍵詞: 最佳化群體智慧模仿機器人模仿中學習類神經SOM
外文關鍵詞: optimization, swarm intelligence, imitating robot, imitating robot, neural networks, SOM,
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 個人化機器人被設計來在居家環境中能協助或娛樂人們,並且被期待
    能夠與人們互動,因此,越來越吸引來自各領域的人們的注意力,而機器
    人能夠模仿人類動作則被視為能與人類在動作上互動的第一步。本篇論文
    提出一個以類神經網路為基礎的機制,得以讓機器人即時模仿人類動作。
    主要由三個步驟組成:1)建立人體基本動作單元、2)針對每個人體基本動
    作單元,利用最佳化演算法找出相對應的機械人關節的馬達角度、3)利用
    前述步驟之結果,設計以類神經網路為基礎的機械人關節角度控制器。
    首先由收集的多種人體動作序列,利用分群演算法找出基本動作單
    元。由於人體基本動作單元數未知,我們採用非監督式的自我組織特徵映
    射圖(SOM)方法,藉由人體動作資料的拓樸分佈,找出基本人體動作單元。
    第二步是針對這些基本動作單元,找出對應的機械人關節馬達角度,使得
    機器人的能作出與人體基本動作最相似的動作,此問題可被視為一個在高
    維度空間中尋找一個最佳解(亦即最佳之馬達角度組合)的最佳化問題,會
    隨著機器人之馬達數目的增加而大大增加其複雜度。針對此最佳化問題,
    本論文特別發展了一個以鴿子覓食機制為構想的最佳化演算法─鴿子群體
    最佳化演算法(Dove Swarm Optimization),希望透過此鴿子群體最佳化演
    算法得以快速找到好的機械人馬達關節角度組合。第三步則是以上述找到
    之機械人馬達關節角度對應之資料集作為訓練資料,訓練一個監督式的類
    神經網路做為機械人關節角度控制器。本論文比較多層感知機網路以及放
    射狀基底函數網路的結果,最後選用多層感知機網路作為控制器。
    在實驗結果部份,本論文與線性對應(linear mapping)的方法比對差
    異度、方均根誤差以及時間,結果發現整體效能平均提升約10%,而對於在
    線性對應方式中表現特別不好的人體姿態,其改進比例則為13%,而在線性
    對應方式中已表現很好的姿態則無太大之改進。


    Personal service robots are designed to assist or entertain people in
    domestic environments and expected to engage in social-human interactions;
    therefore, they are gaining more and more attentions from many different fields.
    A robot that can imitate human actions can be regarded as the first step for
    interacting with humans from the viewpoint of actions. This dissertation presents
    a neural-network-based imitation mechanism for teaching a robot to imitate
    human actions. The proposed mechanism involves in the following three steps: 1)
    the generation of basic human motion units, 2) the mapping between basic
    human motion units and robot joint motor angles, and 3) the construction of a
    NN-based controller.
    First of all, we collected several human motion sequences consisted of
    many different human activities and then used a clustering algorithm to cluster
    the collected human actions into a set of basic human motion units. Since the
    number of basic human motion units is unknown, we decided to adopt the
    self-organized feature map (SOM) as the clustering tool to generate basic human
    motion units. Secondly, for each basic human action unit, we need to find a
    combination of robot joint motor angles to make the robot pose be similar to the
    corresponding human pose. The problem can be regarded as an optimization
    problem of which goal is to find an optimized solution (i.e., the best
    combination of robot joint motor angles) in a multi-dimensional space. The
    complexity of the optimization problem greatly increases as the number of robot
    joint motors. To provide a good solution to the optimization problem, this
    dissertation also proposes the new optimal algorithm called dove swarm
    optimization (DSO), which is motivated by the doves’ foraging behavior. The
    proposed DSO is adopted to affectively find the best combination of robot joint
    motor angles corresponding to each basic human motion unit. In the third step,
    the data set generated in the previous step is adopted as the training data set to
    construct a NN-based controller. From our simulations, we found that controller
    performance achieved by the multilayer perceptrons (MLP) outperformed the
    radial basis function network (RBFN); therefore, we decided to adopt the MLP
    to construct the NN-based controller.
    The proposed mechanism was compared with the most straightforward
    linear mapping method based on the root mean squared error and computational
    time. In simulation results, we found that the proposed imitation mechanism
    could promote the performance about 10% on average. The worst one hundred
    basic human actions achieved by the linear mapping method, the imitation
    performance could be improved to 13% by our mechanism. As for the best one
    hundred basic human actions achieved by the linear mapping method, our
    imitation mechanism did not clearly improve the imitation performance.

    摘 要 ...................................................................................................................................................... i ABSTRACT ................................................................................................................................................... iii Table of Contents ......................................................................................................................................... vi List of Figures ............................................................................................................................................ viii List of Tables ................................................................................................................................................ ix CHAPTER 1 Introduction ............................................................................................................................... 1 1.1 Introduction of Robotic Imitation ................................................................................................................. 1 1.2 The Applications of Robotic Imitation .......................................................................................................... 2 1.3 The Organization of This Dissertation ......................................................................................................... 12 CHAPTER 2 The Proposed NN‐based Imitation Mechanism ........................................................................... 13 CHAPTER 3 The Generation of Basic Human Motion Units ............................................................................ 18 3.1 Review of SOM .......................................................................................................................................... 18 3.2 The Basic Human Motions Unit Maps ........................................................................................................ 20 CHAPTER 4 The Mapping between Basic Human Motion Units and Robotic Motion Angles ........................... 29 4.1 Review of Optimal Algorithms .................................................................................................................... 30 4.1.1 Derivative‐Based Optimization ........................................................................................................... 30 4.1.2 Derivative‐Free Optimization .............................................................................................................. 31 4.1.3 Swarm Intelligence............................................................................................................................. 32 4.2 The Proposed Dove Swarm Optimization Algorithm .................................................................................. 33 4.3 The Fitness Function ................................................................................................................................. 37 CHAPTER 5 The Construction of a NN‐based Controller ................................................................................ 46 5.1 Review of Neural Networks ........................................................................................................................ 46 5.1.1 Multilayer Perceptron ......................................................................................................................... 46 5.1.2 Radial Basis Function Network ........................................................................................................... 49 5.2 The Training Procedure ............................................................................................................................... 51 CHAPTER 6 The Simulation Results ............................................................................................................... 53 6.1 The Results of SOM ................................................................................................................................... 53 6.2 The Results of DSO .................................................................................................................................... 56 6.2.1 Bench Mark Functions ........................................................................................................................ 56 6.2.2 The Simulation Result of the Human Basic Motion Units ................................................................... 60 6.3 The Results of the NN‐based Controller ..................................................................................................... 61 6.4 Comparison between Linear Method and the Proposed Method ............................................................. 63 CHAPTER 7 Conclusions and Future Works ................................................................................................... 70 7.1 Conclusions ................................................................................................................................................ 70 7.2 Future Works ............................................................................................................................................. 70 References ................................................................................................................................................. 72

    [1] S. Thrun, “Toward a Framework for Human-Robot Interaction,” Human
    Computer Interaction, vol. 19, no. 1, pp. 9-24, 2004.
    [2] K. Dautenhahn, S. C. Woods, M. Kaouri, L. Walters, K. L. Koay, and I.
    Werry, “What is a robot companion - friend, assistant or butler?” in
    IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
    1192-1197, 2005.
    [3] C. Breazeal and B. Scassellati, “Robots that imitate humans,” TRENDS in
    Cognitive Sciences, vol.6, no.11, Nov. 2002.
    [4] Tingoy, A. Gunefler, E. Ongun, A. Demirag, and O. Koroglu, “Using
    storytelling in education,” in 4th International Symposium of Interactive
    Media Design, 2006.
    [5] B. Robins, K. Dautenhahn, R. te Boekhorst, and A. Billard, “Effects of
    repeated exposure to a humanoid robot on children with autism,” in
    Designing a More Inclusive World, Springer Verlag, London, pp. 225-236,
    2004.
    [6] B. Robins, K. Dautenhahn, R. Te Boekhorst, and A. Billard “Robotic
    assistants in therapy and education of children with autism: can a small
    humanoid robot help encourage social interaction skills?” Access in the
    Information Society (UAIS), vol. 4, no. 2, pp. 105-120, 2005.
    [7] K. Dautenhahn , C. L. Nehaniv , M. L. Walters , B. Robins , H. Kose-Bagci ,
    N. A. Mirza , and M. Blow, “KASPAR -- A Minimally Expressive
    Humanoid Robot for Human-Robot Interaction Research,” Appl. Bionics
    Biomech, vol. 6 no. 3-4, pp. 369-97, 2009.
    [8] E. S. Kim, R. Paul, F. Shic, and B. Scassellati, “Bridging the Research Gap:
    Making HRI Useful to Individuals with Autism,” Journal of Human-Robot
    interaction, vol. 1, no. 1, pp. 26-54, 2012.
    [9] F Michaud, J.F. Laplante, H. Larouche, A. Duquette, and S. Caron, et al.,
    “Autonomous spherical mobile robot for child-development studies,” IEEE
    Trans. Syst. Man Cybern. Part A, vol. 35, no. 4, pp. 471-480, 2005.
    [10]A. Duquette, F. Michaud, and H. Mercier, “Exploring the use of a mobile
    robot as an imitation agent with children with low-functioning autism,”
    Auton. Robot, vol. 24, pp.147-157, 2008.
    [11]H. Kozima, C. Nakagawa, and Y. Yasuda, “Children-robot interaction: a
    pilot study in autism therapy,” Prog. Brain Res, vol. 164, pp. 385-400,
    2007.
    [12]B. Scassellati, H. Admoni, and M. Matari, “Robots for Use in Autism
    73
    Research,” Annual Review of Biomedical Engineering, vol. 14, pp. 275-294,
    2012.
    [13] L. Boutin, A. Eon, S. Zeghloul, and P. Lacouture, “From human motion
    capture to humanoid locomotion imitation Application to the robots HRP-2
    and HOAP-3,” Robotica, vol. 29, no. 54, Cambridge, MA: MIT Press, 2010.
    [14] X. ZHAO, Q. HUANG, Z. PENG, and K. LI, “Kinematics Mapping and
    Similarity Evaluation of Humanoid Motion Based on Human Motion
    Capture,” in Proc. of 2004 International Conference on Intelligent Robots
    and Systems, Sep. 28 - Oct. 2, 2004, Sendai, Japan.
    [15] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, and K.
    Ikeuchi, “Task Model of Lower Body Motion for a Biped Humanoid Robot
    to Imitate Human Dances,” in 2005 IEEE/RSJ International Conference on
    Intelligent Robots and Systems, pp. 2770-2774, 2005.
    [16] W. Suleiman, E. Yoshida, F. Kanehiro, J. P. Laumond, and A. Monin, “On
    Human Motion Imitation by Humanoid Robot,” in 2008 IEEE International
    Conference on Robotics and Automation Pasadena, CA, USA, May 19-23,
    2008
    [17] D. Lee, C. Ott, Y. Nakamura, and G. Hirzinger, “Physical Human Robot
    Interaction in Imitation Learning,” in 2011 IEEE International Conference
    on Robotics and Automation, May 9-13, 2011, Shanghai, China.
    [18] T. Kaneko, T. Ono, and N. Munakata, “Implementation of
    context-adaptive Physical Imitation between Humans and Robots,” in 20th
    IEEE International Symposium on Robot and Human Interactive
    Communication, July 31 - August 3, 2011, Atlanta, GA, USA.
    [19] F. Montecillo-Puente, M. N. Sreenivasa, and J. Laumond, “On Real-time
    Whole-body Human to Humanoid Motion Transfer,” in Proc. of ICINCO,
    pp. 22-31, 2010.
    [20] A. Bogdanovych, C. Stanton, X. Wang, and M. A. Williams, “Real-Time
    Human-Robot Interactive Coaching System with Full-Body Control
    Interface,” Lecture Notes in Computer Science, vol. 7416, pp 562-573,
    2012.
    [21] J. Koenemann and M. Bennewitz, “Whole-Body Imitation of Human
    Motions with a Nao Humanoid,” in HRI 2012, Boston, Massachusetts, USA,
    March 5–8, 2012.
    [22] F. Zuher and R. Romero, “Recognition of human motions for imitation and
    control of a humanoid robot,” in 2012 Brazilian Robotics Symposium and
    Latin American Robotics Symposium, 2012.
    [23] T. Veltrop, “Brushing the Cat Remotely with a Robot Avatar” Avaliable:
    74
    http://www.youtube.com/watch?v=pxoL4bnLp0g 2013/6/24[data access]
    [24] C. Plaisant, A. Druin, C. Lathan,K. Dakhane, K. Edwards, J. Maxwell Vice,
    and J. Montemayor, “A Storytelling Robot for Pediatric Rehabilitation,” in
    Proc. of ASSETS'00, Washington, ACM, New York, Nov. 2000.
    [25] T. Kohonen, Self-Organization Maps, Springer-Verlag, 1995.
    [26] D. C. Lay, “Change Of Basis,” Linear Algebra and Its Applications,
    Maryland, 3rd ed., 2006.
    [27] M. C. Su and H. C. Chang, “Fast self-organizing feature map algorithm,”
    IEEE Transactions on Neural Networks, vol. 13, no. 3, pp. 721-733, May
    2000.
    [28] M. C. Su, Y. X. Zhao, and J. Lee, “SOM-based Optimization,” in IEEE
    International Joint Conference on Neural Networks (IJCNN), Budapest,
    Hungary, pp. 781-786, July 2004.
    [29] J. S. R. Jang, C. T. Sun, and E. Mizutani, “Neuro-Fuzzy and Soft
    Computing: A Computational Approach to Learning and Machine
    Intelligence,” Prentice Hall, 1997.
    [30] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
    Learning, Addison-Wesley Publishing Company, Reading, MA, 1989.
    [31] J. H. Holland, Adaptation in Natural and Artificial Systems, University of
    Michigan Press, Ann Arbor, 1975.
    [32] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
    annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.
    [33] R. H. J. M. Otten and L. P. P. P. Ginneken, The annealing algorithm,
    Kluwer Academic, 1989.
    [34] L. J. Fogel, “Evolutionary Programming in Perspective: the Top-down
    View,” in Computational Intelligence: Imitating Life, Piscataway, NJ, 1994.
    [35] R. Mallipeddi , S. Mallipeddi , and P.N. Suganthan, “Ensemble strategies
    with adaptive evolutionary programming,” Information Sciences, vol. 180,
    no. 9, pp. 1571-1581, May 2010.
    [36] I. Rechenberg, “Cybernetic solution path of an experimental problem,”
    Royal Aircraft Establishment, Library translation 1122, Farnborough, Hants,
    U.K. 1965.
    [37] I. Rechenberg, “Evolutiosstrategie: optimierung technischer system nach
    prinzipien der biologischen evolution,” Stuttgart, Germany:
    Frommann-Holzboog Verlag, 1973.
    [38] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a
    colony of cooperating agents,” IEEE Trans. Systems, Man, and Cybernetics,
    B. vol. 26, no. 1, pp. 29-41, 1996.
    75
    [39] M. Dorigo and T. Stutzle, Ant Colony Optimization, Cambridge, M: MIT,
    2004.
    [40] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed Optimization by
    Ant Colonies,” in Proc. of First European Conference on Artifical Life,
    edited by F. Varela and P. Bourgine, Cambridge, MA: MIT Press, pp.
    134-142. 1991.
    [41] J. Kennedy and R. Eberhart, “Particle swarm optimization, “in IEEE
    International Conference on Neural Networks, vol.4, pp.1942-1948, Dec.
    1995.
    [42] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,
    “in Proc. of the Sixth International Symposium on Micro Machine and
    Human Science, pp. 39-43, Oct. 1995.
    [43] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, New York:
    Academic Press, 2001.
    [44] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
    University Press, 2004.
    [45] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 2006.
    [46] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
    Natural to Artificial Systems, Oxford University Press, New York, 1999.
    [47] K.N. Krishnanand and D. Ghose, “Glowworm swarm optimisation: a new
    method for optimising multi-modal functions,” International Journal
    Computational Intelligence Studies, vol. 1, no. 1, 2009.
    [48] C. W. Reynolds, “Flocks, herds, and schools: a distributed behavioral
    model,” Computer Graphics, vol. 21, pp. 25-34, 1987.
    [49] F. Heppner and U. Grenander, “A stochastic nonlinear model for
    coordinated bird flocks,” in S. Krasner (Ed.), The Ubiquity of Chaos,
    Washington, DC: AAAS Publications, 1990.
    [50] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower
    pairmechanisms,” Applied Mechanics, vol. 22, pp. 215-221, 1955.
    [51] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
    Control, JOHN WILEY & SONS, INC, New York, U.S.A., 2005.
    [52] S. Kucuk and Z. Bingul, “Chapter 4:Robot Kinematics: Forward and
    Inverse Kinematics,” in Industrial Robotics: Theory, Modeling and Control,
    S. Cubero Ed., Pro Literatur Verlag, Germany / ARS, Austria, pp. 117-148,
    2006.
    [53] M. C. Su and H. T. Chang, Machine Learning: Neural Networks, Fuzzy
    Systems, and Genetic Algorithms 3rd edit (in Chinese), Chuan-Hwa Pub.,
    2004.
    76
    [54] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles,
    Addison-Wesley Publishing Company, London, 1974.
    [55]K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
    systems,” University of Michigan, Ann Arbor, Tech. Rep. No:185, 1975.
    (University Microfilms No. 76-9381)
    [56] G. B. Fogel, G. W. Greenwood, and K. Chellapilla, “Evolutionary
    computation with extinction: Experiments and analysis,” in Proc. of the
    2000 Congress on Evolutionary Computation, pp. 1415-1420, 2000.
    [57] R. Salomon, “Reevaluating Genetic Algorithm Performance under
    Coordinate Rotation of Benchmark Functions,” Elsevier Science on
    BioSystems, vol. 39, pp. 263-278, 1995.
    [58] M. Locatelli, “A Note on the Griewank Test Function,” Journal of Global
    Optimization, vol. 25, no. 2, Feb. 2003.
    [59] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
    numerical function optimization: artificial bee colony (ABC)algorithm,”
    Journal of Global Optimization, vol. 39, pp.459-471, Feb. 2007.
    [60] H. H. Rosenbrock, “An Automatic Method for Finding the Greatest or
    Least Value of a Function,” The Computer Journal, vol. 3, no. 3, pp.
    175-184, 1960.
    [61] T. Krink and R. Thomsen, “Self-organized criticality and mass extinction
    in evolutionary algorithms,” in IEEE International Conf. on Evolutionary
    Computation, pp. 1155-1161, 2001.
    [62] M. Richards and D. Ventura, “Dynamic sociometry in particle swarm
    optimization,” in International Conference on Computational Intelligence
    and Natural Computing, pp. 1557-1560, 2003.
    [63] Y. Shi and R. Eberhart, “Fuzzy adaptive particle swarm optimization,” in
    Proc. of the Congress on Evolutionary Computation, pp. 101-106, 2001.
    [64] J. Vesterstrom and R. Thomsen, “A comparative study of differential
    evolution, particle swarm optimization, and evolutionary algorithms on
    numerical benchmark problems,” in Proc. of the 2004 Congress on
    Evolutionary Computation, vol. 2, pp. 1980-1987, 2004.

    QR CODE
    :::