| 研究生: |
林凱筠 Kai-Yun Lin |
|---|---|
| 論文名稱: |
Ka與V頻段低雜訊與寬頻放大器之研製 Implementation of Ka-Band and V-Band Low Noise Amplifier and Broadband Amplifier |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 放大器 、寬頻 、低雜訊 |
| 外文關鍵詞: | low noise, amplifier, broadband |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究內容為Ka頻段與V頻段射頻毫米波頻段前端電路設計。所設計的晶片皆利用WIN 0.15 um pHEMT與TSMC 0.18 um CMOS製程研製。本論文所設計之晶片包含了低雜訊放大器以及分佈式放大器。低雜訊放大器使用三級串接式架構來實現,前兩級針對低雜訊做匹配,最後一級則是以取得高增益為目標。傳輸線部分除了常見的微帶線之外,亦利用了有限接地共平面波導的形式。有限接地共平面波導因為具有容易製作、方便與同平面元件連接以及減少輻射損耗等優點,適合用來設計微波及毫米波電路中之走線。本論文亦針對有限接地共平面波導的接地平面寬度作模擬,以期得到最佳之電路效能。至於分佈式大器部分則是採用三級串接式分佈式放大器架構,針對高增益做匹配,達到在單位面積內可得到最大之增益。
所設計之晶片其量測與模擬結果如下,V頻段低雜訊放大器在50 GHz的增益為20.7 dB,輸入1-dB壓縮點為-15 dBm,模擬之雜訊指數在60 GHz為4.2 dB;V頻段共平面波導低雜訊放大器在50 GHz的增益為22.17 dB,輸入1-dB壓縮點為-18 dBm,模擬雜訊指數在60 GHz為5.2 dB;20-35 GHz串接分佈式寬頻放大器在頻率範圍內增益大於5 dB,在20 GHz時,增益為12.1 dB,輸入1-dB壓縮點功率在20 GHz為-10 dBm、28 GHz為-7 dBm;26-65 GHz串接分佈式寬頻放大器在頻寬達39 GHz內,增益為大於16.5 dB,輸入1-dB壓縮點功率為大於-15 dBm。
The thesis focuses on the millimeter wave receiver front-end circuit designs, which include the low noise amplifiers in V band. The circuits are fabricated by WIN 0.15 um pHEMT and TSMC 0.18 um CMOS process.
Chips designed in this thesis include the low noise amplifier and distributed amplifier. The low noise amplifier is implemented by cascading three stages, the first two stage is designed for low noise while the last stage is matched for high gain. Except microstrip line, the transmission line also presents by finite-width ground coplanar waveguide. Finite-width ground coplanar waveguide has the benefits with simplifying the fabrication, facilitating easy shunt as well as series surface mounting of devices, and reducing radiation loss and suits for designing the route in microwave and millimeter wave circuit. The width of the ground line of the finite-width ground coplanar waveguide is simulated to gain the optimum circuit performance. On the other hand, the broadband amplifier is implemented using the topology of three-stage cascaded single stage distributed amplifier to obtain the maximum gain in per unit area.
The measured and simulated results of the designed circuits are illustrated as followings: for the V-band LNA at 50 GHz, the obtained small signal gain is 20.7 dB, input power at the 1-dB gain compression point is -15 dBm, simulated noise figure is 4.2 dB at 60 GHz; for V-band coplanar waveguide LNA at 50 GHz, the small signal gain is 22.17 dB, output power at the 1-dB gain compression point is -18 dBm, the simulated noise figure is 5.2 dB at 60 GHz; for the 20-35 GHz cascaded single stage distributed amplifier, the small signal gain is more than 5 dB with a bandwidth of 15 GHz where the peak gain is 12.1 dB at 20 GHz, input power at the 1-dB gain impression point is -10 dBm and -7 dBm at 20 GHz and 28 GHz, respectively; for the 26-65 GHz cascaded single stage distributed amplifier, the small signal gain is more than 16.5 dB with a bandwidth of 39 GHz, input power at the 1-dB gain impression point is more than -15 dBm.
[1] I. Bahl and P. Bhartia, “Microwave Solid State Circuit Design,” Second Edition, Wiley-Interscience, 2003.
[2] J. F. White, “High frequency techniques – An introduction to RF and Microwave Engineering,” IEEE Press, 2004.
[3] C. Bowick, “RF Circuit Design,” Indiana/H. W. Sams, 1982.
[4] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001.
[5] R. Gilmore, L. Besser, “Practical RF Circuit Design for Modern Wireless Systems: Vol. II - Active Circuits and Systems,” Artech House, 2003.
[6] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, ”Microwave circuit design using linear and nonlinear techniques,” New York/John Wiley & Sons, 1990.
[7] G. Gonzalez, “Microwave Transistor Amplifiers: Analysis and Design,” Upper Saddle River, N.J Prentice Hall, 1997.
[8] Simons and Rainee, “Coplanar waveguide circuits, components, and systems,” John Wiley & Sons, 2001.
[9] X. Chen, J. Liu, J. Wang, “Ka-band AlGaAs/InGaAs PHEMT monolithic low-noise amplifier,” Millimeter Wave and Far Infrared Science and Technology Proc. 4th International Conference on , 12-15 , Aug. 1996.
[10] H.S. Chou, C.C. Liu, T.H. Chen, “Ka-band monolithic GaAs PHEMT low noise and driver amplifiers,” Microwave Conference, Asia-Pacific, APMC 2001,
vol. 1 , 3-6, Dec. 2001
[11] J. S. Yuk, B. G. Choi, C. S. Park, “Device and circuit optimization of PHEMT MMIC LNA for low power consumption,” Microwave Conference, Asia-Pacific APMC 2001. vol. 1, 3-6, Dec. 2001
[12] Y. Sun, J. Borngraber, F. Herzel, and W. Winkler, ”A fully integrated 60 GHz LNA in SiGe:C BiCMOS technology,” Bipolar/BiCMOS Circuits and Technology Meeting, Proceedings of the, pp. 14-17, 9-11 Oct. 2005.
[13] S. Handa, E. Suematsu, H. Tanaka, Y. Motouchi, M. Yagura, A. Yamada, and H. Sato, “60GHz-band low noise amplifier and power amplifier using InGaP/GaAs HBT technology,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 25th Annual Technical Digest IEEE, pp. 227-230, 2003.
[14] K. Fujii, M. Adamski, P. Bianco, D. Gunyan, J. Hall, R. Kishimura, C. Lesko, M. Schefer, S. Hessel, H. Morkner, and A. Niedzwiecki, “A 60GHz MMIC Chipset for 1-Gbith Wireless Links,” Microwave Symposium Digest, IEEE MTT-S International, vol. 3, pp. 1725-1728, 2-7 June 2002.
[15] Y. Mimino, K. Nakamura, Y. Hasegawa, Y. Aoki, S. Kuroda, and T. Tokumitsu, “A 60 GHz millimeter-wave MMIC chipset for broadband wireless access system front-end,” Microwave Symposium Digest, IEEE MTT-S International, vol. 3, pp. 1721-1724, 2-7 June 2002.
[16] K. Nishikawa, B. Piernas, K. Kamogawa, T. Nakagawa, and K. Araki, “Compact LNA and VCO 3-D MMICs using commercial GaAs PHEMT technology for V-band single-chip TRX MMIC,” Microwave Symposium Digest, IEEE MTT-S International, vol. 3, pp. 1717-1720, 2-7 June 2002.
[17] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G..K. Hohenwarter, “MESFET Distributed Amplifier Design Guidelines,” IEEE Trans. Microwave Theory Tech., vol. 32, no. 3, pp. 268-275, Mar. 1984.
[18] S. N. Prasad, J. B. Beyer, and I. S. Chang, “Power-bandwidth considerations in the design of MESFET distributed amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 36, no. 7, pp. 1117-1123, July. 1988.
[19] B. Y. Banyamin and M. Berwick, “The gain advantages of four cascaded single stage distributed amplifier configurations,” IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, pp. 1325-1328, June 11-16, 2000.
[20] J. P. Rooney, R. Parry, I. Hunter, R.D. Pollard, “A filter synthesis technique applied to the design of multistage broadband microwave amplifiers,” Microwave Symposium Digest, 2002 IEEE MTT-S International Volume 3, 2-7 Page(s):1915 – 1918, June 2002
[21] K. L. Deng, T. W. Huang, H. Wang, “Design and analysis of novel high-gain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages,” IEEE Trans. Microwave Theory and Tech., vol. 51, no. 11,
pp. 2188-2196, Nov. 2003.
[22] F. Ellinger, “26–42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, Mar. 2004.
[23] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368–373, Feb. 2004.
[24] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang, “K-Band using 0.18um CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
[25] A. Masud, H. Zirath, M. Ferndahl, and H.-O. Vickes, “90-nm CMOS MMIC amplifier,” in RFIC Symp. Dig., pp. 971-974, 2004.
[26] Y. Mimino, M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S. Kuroda, “High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication,” in IEEE MTT-S Int. Dig.., vol. 1, pp. 17-20, Jun. 2000.
[27] H.-M. Hsu, J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C. Wong, C. W. Chen, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A 0.18-um foundry RF CMOS technology with 70-GHz fT for single chip system solutions,” in IEEE MTT-S Int. Dig., pp.1869-1872, 2001.
[28] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[29] Kärkkäinen, M., Varonen, M., Kangaslahti, P., Halonen, K. “Integrated Amplifier Circuits for 60 GHz Broadband Telecommunication,” Proc. Analog Integrated Circuits and Signal, vol. 42, no. 1, pp. 37-46, Netherlands, Jan. 2005.
[30] Sonnet. (2004) High frequency electromagnetic software. [Online]. Available: http://www.sonnetusa.com
[31] K.K. Moez and M.I. Elmasry, “Design of CMOS distributed amplifiers for maximum bandwidth,” Microelectronics, ICM Proceedings. The 16th International Conference on pp. 317-319, 6-8 Dec. 2004
[32] M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S. Chang, and J.G.J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” Microwave and Wireless Components Letters, IEEE, vol. 14, no. 12, pp. 554-556, Dec. 2004.
[33] R.E. Amaya, N.G. Tarr, and C. Plett, “A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguides,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2004. Digest of Papers. IEEE, pp. 193-196, 6-8 June 2004.
[34] L.-H. Lu, T.-Y. Chen, and Y.-J. Lin, “A 32-GHz non-uniform distributed amplifier in 0.18-um CMOS,” Microwave and Wireless Components Letters, IEEE, vol. 15, no. 11, pp. 745-747, Nov. 2005.
[35] M. S. Heins, C. F. Campbell, M. Y. Kao, M. E. Muir, and J. M. Carroll, “A GaAs MHEMT distributed amplifier with 300-GHz gain-bandwidth product for 40-Gb/s optical applications,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 1061-1064, June 2002.
[36] H. Shigematsu, N. Yoshida, M. Sato, T. Hirose, and Y. Watanabe, “45-GHz distributed amplifier with a linear 6-Vp-p output for a 40-Gb/s LiNbO modulator driver circuit,” IEEE Int. GaAs Symp. Dig., vol. 1, pp. 137-140, June 2001.
[37] M. S. Heins, J. M. Carroll, M. Y. Kao, C.F. Steinbeiser, T.R. Landon, C.F. Campbell, “An ultra-wideband GaAs pHEMT driver amplifier for fiber optic communications at 40 Gb/s and beyond,” Optical Fiber Communication Conference and Exhibit, pp. 273-274, 17-22 Mar 2002.