跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹承璠
CHAN,CHENG-FAN
論文名稱: 深層地質水平鑽孔處置場熱傳分析、材料及尺寸參數分析與金屬部件腐蝕分析
指導教授: 張瑞宏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 168
中文關鍵詞: 用過核燃料深層地質處置水平鑽孔處置材料性質幾何變化腐蝕壽命預測
外文關鍵詞: spent nuclear fuel, deep geological disposal, horizontal drillhole disposal, material properties, geometric variations, corrosion, lifetime prediction
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核能為現階段重要替代能源,然而用過核燃料具高放射性與長半衰期,其最終處置已成為全球亟需因應的課題。深層地質處置因能保障長期隔離與穩定,被視為當前最具可行性與安全性的解決方案。
    其中,水平鑽孔處置法兼具結構穩定、施工效率高與配置彈性等優勢,隨地下工程技術進步逐漸受到重視,可望成為地質處置的新興替代方案。其設計與安全評估,須充分考慮衰變熱對材料性能與整體結構安全的影響。因此,瞭解系統熱傳行為與溫度演變趨勢為必要關鍵步驟。
    本研究以 Deep Isolation, Inc. 所提出之水平鑽孔處置場設計為基礎,透過有限元素分析軟體 ABAQUS 建構模型並進行模擬,與既有研究結果比對以驗證等效模型可靠度與適用性。此外,本研究建立程式自動化模擬流程,系統性探討材料性質及幾何變化對溫度分布之影響。亦初步探討金屬材料層腐蝕行為與壽命預測方式。


    Nuclear energy is currently a significant alternative energy source; however, spent nuclear fuel exhibits high radioactivity and a long half-life, making its final disposal a pressing global issue. Deep geological disposal, which can ensure long-term isolation and stability, is regarded as the most feasible and safest solution to date.
    Among disposal methods, the horizontal drillhole disposal method offers advantages such as structural stability, high construction efficiency, and flexible configuration. With advances in underground engineering technology, it has gradually attracted increasing attention and is expected to become an emerging alternative for geological disposal. In its design and safety assessment, the impact of decay heat on material properties and overall structural integrity must be carefully considered. Therefore, understanding the system’s thermal behavior and temperature evolution trends is a critical and necessary step.
    This study is based on the horizontal drillhole disposal design proposed by Deep Isolation, Inc. Finite element modeling and simulations were conducted using ABAQUS, and the reliability and applicability of the equivalent model were validated through comparisons with existing studies. Furthermore, an automated simulation workflow was developed to systematically investigate the effects of material properties and geometric variations on temperature distribution. Additionally, a preliminary investigation was conducted on the corrosion behavior of metallic material layers and methods for lifetime prediction.

    目錄 摘要 I 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究主題與方法 3 1.4 論文內容 4 第二章 文獻回顧 5 2.1 深層地質處置 5 2.1.1 用過核燃料 5 2.1.2 目標與功能 5 2.1.3 國際發展現況 7 2.2 水平鑽孔型處置場 17 2.2.1 概述 17 2.2.2 結構配置 19 2.2.3 施工流程 21 2.2.4 安全評估 22 2.2.5 優缺比較 23 2.3 處置場金屬部件腐蝕 25 2.3.1 成因 25 2.3.2 推估方法 26 2.3.3 材料性能 27 2.3.4 階段劃分 28 第三章 理論與數值分析方法 30 3.1 前言 30 3.2 熱傳分析理論 30 3.2.1 熱傳導 31 3.2.2 熱對流 34 3.2.3 熱輻射 35 3.3 有限元素法 36 3.4 代表體積單元 38 3.5 自動化分析流程架構 39 第四章 數值模型平行驗證與適用性探討 43 4.1 前言 43 4.2 文獻案例重現與驗證 44 4.2.1 模型介紹 44 4.2.2 案例介紹 55 4.2.3 模擬結果 55 4.3 實際深度模型比較 58 4.3.1 幾何參數變化 58 4.3.2 模擬結果 59 4.4 孔道間距影響 60 4.4.1 幾何參數變化 60 4.4.2 模擬結果 61 4.5 適用性分析探討 63 第五章 幾何配置與參數變化對熱傳影響分析 66 5.1 前言 66 5.2 熱物理性質參數變化 67 5.2.1 參數變化設定 67 5.2.2 模擬結果 69 5.2.3 結果討論 84 5.3 構造層厚度變化 87 5.3.1 參數變化設定 87 5.3.2 模擬結果 88 5.3.3 結果討論 94 第六章 處置場金屬部件腐蝕與壽命評估 97 6.1 前言 97 6.2 文獻估算方法 97 6.2.1 腐蝕成因與影響因素 97 6.2.2 環境條件演變 99 6.2.3 估算方法 99 6.3 本文計算方法 101 6.3.1 腐蝕電流密度 101 6.3.2 合金密度 102 6.3.3 金屬等效重量 103 6.3.4 腐蝕速率–溫度曲線 104 6.4 結果比對 105 第七章 結論與建議 108 7.1 結論 108 7.2 建議 110 參考文獻 111 附錄1 main.py 113 附錄2 config.ini 119 附錄3 configReader.py 121 附錄4 template.py 126 附錄5 replace.py 141 附錄6 get_odb_max_temp.py 145 附錄7 replace_max.py 147 附錄8 generate_excel.py 150

    參考文獻
    [1] Stefan Finsterle, Richard A. Muller, Rod Baltzer, Joe Payer, James W. Rector, “Thermal Evolution near Heat-Generating Nuclear Waste Canisters Disposed in Horizontal Drillholes”, Energies, vol. 12, no. 4, p. 596, Feb. 2019.
    [2] IAEA, “Management of Spent Fuel from Nuclear Power Reactors”, IAEA Proceedings Series, Vienna: International Atomic Energy Agency, 2005.
    [3] IAEA, “Technical Reports Series No. 413”, 2003.
    [4] IAEA, “Safety Standards Series No. SSR-5”, 2011.
    [5]台灣電力公司,「用過核子燃料最終處置計畫 潛在處置母岩特性調查與評估階段-103年度工作計畫(修正二版)」,2014年1月。
    [6] NUMO, “地層処分とは?”, https://www.numo.or.jp/q_and_a/100008.html. [Accessed: Jul. 30, 2025].
    [7] NUMO, “高レベル放射性廃棄物地層処分の技術と安全性”, 2004.
    [8] SKB, “Data report for the safety assessment SR-site”, TR-10-52, Dec. 2010.
    [9]行政院原子能委員會,「核廢料最終處置技術及世界各國高、低放最終處置場址選擇與興建近況報告」,2020年5月。
    [10] Michael Lersow, Peter Waggitt, “Disposal of All Forms of Radioactive Waste and Residues - Long-Term Stable and Safe Storage in Geotechnical Environmental Structures”, Nov. 2019.
    [11] Posiva, “Introducing ONKALO and its principle of operation”, https://www.posiva.fi/en/index/news/pressreleasesstockexchangereleases/2024/thisisonkaloandthisishowitworks.html. [Accessed: Jul. 30, 2025].
    [12] Richard A. Muller, Stefan Finsterle, John Grimsich, Rod Baltzer, Elizabeth A. Muller, James W. Rector, Joe Payer, John Apps, “Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes” , Energies, vol. 12, no. 11, 2052, May 29, 2019.
    [13] Stefan Finsterle, Cal Cooper, Richard A. Muller, John Grimsich, John Apps, “Sealing of a Deep Horizontal Borehole Repository for Nuclear Waste”, Energies, vol. 14, no. 1, 91, December 26, 2020.
    [14] Patrik Sellin, Olivier Xavier Leupin, “The Use of Clay as an Engineered Barrier in Radioactive-Waste Management – A Review”, Clays and Clay Minerals, vol. 61, no. 6, pp. 477–498, March 2014.
    [15] Joe H. Payer, Stefan Finsterle, John A. Apps, Richard A. Muller, “Corrosion Performance of Engineered Barrier System in Deep Horizontal Drillholes”, Energies, vol. 12, no. 8, 1491, 19 April 2019.
    [16] R. B. Rebak, J. H. Payer, “Passive Corrosion Behavior of Alloy 22,” Technical Report, 10 January 2006.

    QR CODE
    :::