| 研究生: |
黃晟志 Cheng-chi Huang |
|---|---|
| 論文名稱: |
在社交網路服務平台上利用朋友關係增進社群搜尋的效率 Improve Community Search with Friend in Social Network Service |
| 指導教授: |
楊鎮華
Stephen J.H. Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 社交網路服務 、社群 、搜尋 、朋友網 |
| 外文關鍵詞: | friend network, search, social network service, community |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
社交網路服務在網路上提供一種社交平台讓使用者能結交朋友或獲得知識。使用者可以透過朋友的合作與活動的參與達到學習的目的。在社交網路服務的平台下,使用者通常利用關鍵字搜尋的方法來搜尋朋友或是社群。使用者透過關鍵字的輸入讓系統了解使用者需要哪類型的資訊。但是關鍵字有一字多義的問題。這問題會使系統帶給使用者不需要的資訊,使得使用者的搜尋效率下降。我們透過使用者的人際關係去分析使用者下關鍵字的適當語意來改善搜尋效率。
Social network service is a social environment that people get friends and knowledge in the internet. In social network service like Orkut, People use keyword search to search friends and communities. People use keyword to let system know what kind of information they want, but words have homonym problem. It causes keyword based retrieval method may retrieval information that users not really want. It will decrease the search efficiency. I propose a strategy to improve keyword based retrieval method. I use user’s friends to understand what the keyword which user query mean. This strategy can improve system get proper information to users.
[1] Communiy, from http://en.wikipedia.org/wiki/Community
[2] Ky Virtual Library (2008), Introduction of keyword search, from http://www.kyvl.org/html/tutorial/research/subject.shtml
[3] Reece G. (2005), Introduction of keyword search, from http://www.library.american.edu/tutorial/keyword2.html
[4] PageRank from http://en.wikipedia.org/wiki/Page_rank
[5] Berberich K., Bedathur S., Vazirgiannis M., Weikum G. (2006) BuzzRank…and the Trend is Your Friend, Proceedings of the 15th international conference on World Wide Web
[6] Zhang J., Yan Z.,(2006) Semantic-driven Management and Search for Resources in Research Community, Proceedings of the Second International Conference on Semantics, Knowledge, and Grid (SKG’06)
[7] Orkut, from http://en.wikipedia.org/wiki/Orkut
[8] Orkut from http://www.orkut.com/
[9] Glance N.S.,(2001) Community Search Assistant, Proceedings of the 6th international conference on Intelligent user interfaces, 91-96
[10] Friend, from http://en.wikipedia.org/wiki/Friend
[11] Huang J.W., Fox M.S.(2005), Trust Judgment in Knowledge Provenance, Proceeding of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)
[12] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to Algorithms, Second Edition
[13] Shahabi C., Chen Y.S., (2003) An Adaptive Recommendation System without Explicit Acquisition of User Relevance Feedback, Distributed and Parallel Databases, SpringerNetherlands, 14(2), 173-192
[14] Six_degrees_of_separation, from http://en.wikipedia.org/wiki/Six_degrees_of_separation
[15] http://www.orgnet.com/index.html
[16] Friendster, from http://www.friendster.com
[17] Myspace, from http://www.myspace.com
[18] Ochoa-Zezzatti A., Martínez J., Hernández A., Muñoz J.(2007) Discover Behavior of Turkish People in Orkut, 17th International Conference on Electronics, Communications and Computers (CONIELECOMP''07)
[19] Cho J., Roy S., Adams R.E.,(2005) Page Quality: in Search of an Unbiased Web Ranking. Proceedings of the 2005 ACM SIGMOD international conference (SIGMOD’05)
[20] Yu P.S., Li X., Liu B.,(2004) On the Temporal Dimension of Search, International World Wide Web Conference
[21] Page L., Brin S., Motwani R., Winograd T., (1998) The Pagerank Citation Ranking: Bringing Order to the Web, Stanford Tech. rep., 1998
[22] Huang J., Fox M.S., (2004) Dynamic Knowledge Provenance, in Proceedings of Business Agents and Semantic Web Workshop, London, Canada, 2004, 11-20
[23] Balabanovi M., (1997) A Adaptive Web Page Recommendation Service, Proceedings of Autonomous Agents, 1997, 378-385
[24] Mobasher B., Cooley R., Srivastava, (2000) Automatic Personalization Based on Web Usage Mining, Communication of the ACM, vol. 43, no. 8, 142-151
[25] Mobasher B., Dai H., Luo T., Nakagawa M., (2001) Web Data Mining: Effective Personalization Based on Association Rule Discovery from Web Usage Data, in Proceeding of the Third International Workshop on the Web Information and Data Management, 2001
[26] Shahabi C., Banaei-Kashani F., Faruque J., Faisal A. (2001) Feature Matrices: A Model for Efficient and Anonymous Web Usage Mining, in Proceedings of EC-Web, 2001
[27] Shahabi C., Banaei-Kashani F., Faruque J., (2001) A Reliable, Efficient, and Scalable System for Web Usage Data Acquisition, in WebKDD’01 Workshop in Conjunction with the ACM-SIGKDD, 2001
[28] Shahabi C., Zarkesh A.M., Adibi J., Shah V., (1997) Knowledge Discovery from Users Web Page Navigation, in Proceedings of the IEEE RIDE97 Workshop, 1997
[29] Golbeck J., Hendler J., Parsia B., (2002) Trust Networks on the Semantic Web, University of Maryland
[30] Jiang T., He D., (2007) Redefining Social Network Services: A Solution to Personal Information and Knowledge Management, International Conference on Web Intelligence and Intelligent Agent Technology, 292-295
[31] Boyd D., (2004) Friendster and Publicly Articulated Social Networks, Conference on Human Factors and Computing System (CHI’04)
[32] Agichtein E., Brill E., Dumais S., (2006) Improving Web Search Ranking by Incorporating User Behavior Information, in Proceedings of SIGIR 2006, August, 2006
[33] Herlocker J.L., Konstan J.A., Riedl J., (2000) Explaining Collaborative Filtering Recommendations, in Proceeding of ACM 2000 Conference on Computer Supported Cooperative Work, 2000
[34] Salton G., McGill M.J., (1983) Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983
[35] Bao S., Xue G., Wu X., Yu Y., Fei B., Su Z., Yu Y., (2007) Optimizing Web Search Using Social Annotations, Proceedings of the 16th international conference on World Wide Web
[36] Yokoyama T., Kashihara S., Okuda T., Kadobayashi Y., Yamaguchi S., (2007) A Generic API for Retrieving Human-Oriented Information from Social Network Services, 2007International Symposium on Applications and the Internet Workshops(SAINT’07)
[37] Adamic L.A., Adar E., (2002) A friends and Neighbors on the Web, Social Networks, 25(3), 211-230
[38] Hi5, from http://www.hi5.com
[39] Open Source Social Platforms: 10 of the Best, from
http://mashable.com/2007/07/25/open-source-social-platforms/
[40] 40 Downloadable Open Source Social Software, from
http://www.maxkiesler.com/index.php/weblog/comments/40_downloadable_open_source_social_software_applications
[41] facelift, from http://www.patrick-opitz.com/projects/facelift/
[42] facelift, from,
http://sourceforge.net/project/downloading.php?group_id=192898&filesize=4729506&filename=FaceliftHi5_v1_complete_install.exe&90440210
[43] Opitz.P(2007), ”Developer document Facelift Hi5 Crawler Module” https://sourceforge.net/project/downloading.php?group_id=192898&filesize=4163996&filename=Facelift-Hi5_docs.zip&71589601
[44] Hunsicker.S (2007), “User Document Facelift Hi5 Crawler Module” https://sourceforge.net/project/downloading.php?group_id=192898&filesize=4163996&filename=Facelift-Hi5_docs.zip&71589601
[45] Opitz.P(2007), ”Developer document Facelift Hi5 Visualization Module” https://sourceforge.net/project/downloading.php?group_id=192898&filesize=4163996&filename=Facelift-Hi5_docs.zip&71589601
[46] Vister, from http://www.cs.berkeley.edu/~jheer/vizster/early_design/
[47] Prefuse, from http://prefuse.org/
[48] Apache, from http://httpd.apache.org/
[49] Mysql, from http://dev.mysql.com/
[50] Hsql, from http://hsqldb.sourceforge.net/
[51] PHP, from http://www.php.net/
[52] Dolphin, from http://hubpages.com/hub/Dolphin_Community_Builder_Platform
[53] Java Database Connectivity (JDBC),
from http://forum.java.sun.com/thread.jspa?threadID=664916&messageID=3893759
[54] Boonex dolphin, from http://www.boonex.com/products/dolphin/
[55] Ray, from http://www.boonex.com/products/ray/download/
[56] Orca, from http://www.boonex.com/products/orca/download/
[57] Dolphin Forum, from http://www.expertzzz.com/dolphin
[58] Boyd D., Heer J., (2006) “Profile as Conversation : Networked Identity Performance on Friendster” Proceeding of the 39th Hawaii International Conference on System Sciences, 2006
[59] Heer J., Boyd D., (2005) “Vizster: Visualizing Online Social Networks”, IEEESymposium on Information Visualization 2005 October, p23-25
[60] Freeman L., (2000) “Visualizing Social Networks”, Journal of Social Structure, 1, 2000
[61] Smyth B.,() ”A Community-Based Approach to Personalizing Web Search”, Published by the IEEE Computer Society, 2007, p42-50
[62] Freyneand J., Smyth B., (2006) “Cooperating Search Communities”, Proc.4th Int’l Conf. Adaptive Hypermedia and Adaptive Web-Based Systems, Spring-Verlag, 2006, p101-110
[63] Haveliwala T.H., (2003) “Topic-Sensitive PageRank: A Context Sensitive Ranking Algorithm for Web Search”, IEEE Trans. Knowledge and Data Engineering, vol.15, no.4, 2003, p784-796
[64] Teevan J., Dumais S.T., and Horvitz E., (2005) “Personalizing Search Via Automated Analysis of Interests and Activities”, Proc. 28th Ann. Int’l ACM SIGIR Conf. Research and Development in Information Retrieval(SIGIR 05), ACM Press, 2005, pp449-456
[65] Qiu F. and Cho J., (2006) “Automatic Identification of User Interest for Personalized Search”, Proceeding of 15th Int’l World Wide Web Conference(WWW 06), ACM Press,2006, pp727-736
[66] Liu F., Yu C., and Meng W., (2004) “Personalized Web Search for Improving Retrival Effectiveness”, IEEE Transaction Knowledge and Data Engineering, vol.16, no.1, 2004, p28-40
[67] Wasserman and Faust K. (1994) “Social Network Analysis”, Cambridge University Press, Combridge, 1994
[68] Corley H.W., Sha D.Y., (1982) “Most Vital Links and Nodes in Weighted Networks”, Oper. Res. Letter. 1, p157-160,
[69] Li P., Ren Y., Xi Y., (2004) “An Importance Measure of Actors(set) within a Network”, System Engineering, 22(4), 2004
[70] Yang S., Knoke D., (2001) “Optimal Connections: Strengthen and Distance in Valued Graphs,” Social Networks, 23, p285-295, 2001