| 研究生: |
郭俊良 Chun-Liang Kuo |
|---|---|
| 論文名稱: |
以孔隙比、有效應力與剪力波速關係繪製臺北盆地Vs30分布圖 Correlation between shear wave velocity, void ratio and effective stress: Mapping Vs30 in Taipei Basin |
| 指導教授: |
董家鈞
李錫堤 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 臺北盆地 、場址效應 、Vs30 、剪力波速 、孔隙比 、有效應力 |
| 外文關鍵詞: | Taipei Basin, site effect, Vs30, shear wave velocity, void ratio, effective stress |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
場址效應是影響地震震度的因素之一,在地震危害度分析中亦是相當重要的部分。地表下三十公尺內之平均剪力波速(Vs30)是一個被廣泛用於評估地盤特性的參數,舉凡近年提出之地盤分類法或是地動預估式皆使用Vs30作為描述場址特性的參數。臺北盆地是臺灣人口密集且經濟活動頻繁的地區,然而其盆地的地形以及覆蓋其上的鬆軟沖積層使得重大地震發生時會因為場址效應產生更大危害。過往雖有研究探討臺北盆地之Vs30分布,然而隨著臺北盆地內的鑽井資料日益增加,有必要重新繪製臺北盆地之Vs30分布圖。
臺北盆地在進行Vs30推估時有著鑽井資料量多的優勢,可藉由經驗公式將鑽井資料轉換成剪力波速以獲得更多的Vs30資料。舊有的剪力波速經驗式大多以標準貫入試驗N值(SPT-N值)或深度做為主要影響參數。然而標準貫入試驗常受人為操作或設備影響,使得N值在使用上有標準不一致之問題。過去研究顯示,砂土之孔隙比、有效應力與剪力波速間有高度的相關性,因此本研究嘗試建立一新的剪力波速經驗式,並以孔隙比與垂直有效應力作為迴歸式之自變數,期望能以較低的推估誤差取代舊有的剪力波速經驗式。
本研究蒐集2000年至2004年分布於全臺灣的強震站鑽井資料(土層物性試驗資料與剪力波速測量資料)進行迴歸分析,建立可應用於臺北盆地礫石、砂、粉土與黏土之剪力波速經驗公式。過程中對剪力波速資料進行檢核,並依照材料是否屬於沖積層樣本及土壤類型進行篩選與分類,藉此降低剪力波速推估的不確定性。
本研究藉由此經驗公式對臺北盆地內數量眾多的工程鑽井進行各深度土壤之剪力波速推估,以獲得更多的Vs30資料。最後以Kriging with varying local mean方法對各鑽井之Vs30進行空間內插,完成臺北盆地Vs30分布圖。
研究結果顯示,本研究建議之砂、黏土與粉土剪力波速經驗式與前人研究相比有較低不確定性與較不偏估的優勢。在臺北盆地Vs30分布上,大部分地區之Vs30落在210m/s至300m/s之間,但在北投、士林、中山、松山、信義、大安等地區之Vs30低於210m/s,而在盆地西南側大漢溪流域(樹林、土城)以及盆地東南側新店溪流域(新店、文山、永和及中和區東側)等地區之Vs30較高,約在210m/s至440m/s之間。除此之外,前人研究認為中山、中正、大安與松山等區之Vs30小於180 m/s,然而隨著本研究將新的強震站資料加入分析,結果顯示此Vs30低區應不存在。
最後本研究計算臺北盆地內工程鑽井處因剪力波速推估方法造成的Vs30不確定性,結果顯示此類不確定性絕大多數落在50m/s至70m/s間,越靠近盆地邊緣與盆地南側因地質材料多為礫石或岩層,因此Vs30之不確定性較高。
Site effect is one of the influential factors of seismic intensity. It also plays a crucial role in seismic hazard analysis. The average shear wave velocity of the upper 30 meters of a soil profile (Vs30) has been widely used for assessing site characteristics, such as site classification and ground motion prediction equation used Vs30 to describe the site conditions. Taipei Basin is an area with high population density and active economic activities in Taiwan. Site effect happen here which increase the earthquake disaster because of the basin topography and the overlying soft sediments. Although the distribution of Vs30 has been proposed by previous studies, as the borehole data gradually accumulates, it is necessary to develop a new Vs30 map in Taipei Basin.
There are a lot of borehole data in Taipei Basin. Those data can be converted into shear wave velocity(Vs) by empirical equations then get more Vs30 data. The existing empirical equations usually use Standard Penetration Test N value or depth as independent variable. However, Standard Penetration Test is easily affected by man-made operations or differences of equipment, which makes the N value inconsistent. Previous studies have pointed out that there is a strong correlation between void ratio, effective stress and Vs in sandy soil. Therefore, this study tried to establish new empirical equations which use void ratio and vertical effective stress as independent variable, and we expect the new equations can replace the old one with lower prediction error.
In this study, we constructed the Vs empirical equations for gravel, sand, clay and silt in Taipei Basin. The soil physical properties test data and Vs measurement data we used come from EGDT(Engineering Geological Database for TSMIP). In order to reduce the uncertainty of Vs estimation, the quality of Vs measurement data was checked and the soil data was separated by (1) whether the sample belongs to Holocene sediment; (2) classification of soil sample.
By using this empirical equation, the Vs of each depth of the numerous engineering borehole in Taipei Basin were computed to obtain more Vs30 data. Finally, the “Kriging with varying local means” method was applied to spatial interpolation and the distribution of Vs30 in Taipei Basin was mapped.
Compared with previous studies, the Vs empirical equation for sand, clay and silt suggested in this study have lower prediction uncertainty and less bias. Regarding the distribution of Vs30 in the Taipei Basin, the Vs30 at most of the area is around 210m/s to 300m/s. In Beitou, Shilin, Zhongshan, Songshan, Xinyi and Daan district, Vs30 is lower than 210m/s. In the southwest and southeast part of the basin, Vs30 is relatively higher, ranging from 210m/s to 440m/s. In addition, previous studies believe that there is a low-Vs30 area which Vs30 is lower than 180m/s in Zhongshan, Zhongzheng, Daan and Songshan. However, as this study adds new data to the analysis, the results show that this low-Vs30 area should not exist.
Finally, we calculated the Vs30 uncertainty caused by Vs estimation at engineering borehole site in Taipei Basin. The results show that this kind of uncertainties at most of the engineering borehole sites are 50m/s to 70 m/s. Nevertheless, there are higher uncertainties when borehole is located in southern basin or near the edge of basin, because most of the materials in these area are gravel and rock.
交通部中央氣象局地球物理資料管理系統網頁,自由場強地動觀測網,檢自
https://gdms.cwb.gov.tw/gdms-freefield.php。
李錫堤、黃慈銘、廖啟雯(2002)。台北盆地松山層土壤性質及剪力波速之空間分析,地工技術,(90),41-54。
張永欣(2007),以多變量地質統計方法進行雨量空間內插,國立中央大學應用地質研究所,碩士論文。
陳銘鴻、李榮瑞(2003)。盪式井測資料擷取系統之介紹及說明。地工技術,(98),71-78。
郭俊翔、溫國樑、謝宏灝、林哲民、張道明(2011)。近地表剪力波速性質之研究,國家地震工程研究中心(編號:NCREE-11-022)。
郭俊翔、林哲民、章順強、溫國樑、謝宏灝(2017)。臺灣強震測站場址資料庫,國家地震工程研究中心(編號:NCREE-17-004)。
經濟部中央地質調查所(2011),臺北盆地的地質與防災,新北市:經濟部中央地質調查所。
楊珮欣(2019),台灣東北部隱沒帶地震地動預估式之精進研究,國立中央大學應用地質研究所,碩士論文。
蔡璧嬬(2007),臺灣自由場強震站場址分類之進一步研究,國立中央大學應用地質研究所,碩士論文。
蔡孟儒(2020),水文地質概念模型差異對污染傳輸模擬之影響,國立中央大學應用地質研究所,碩士論文。
謝昇航(2011),臺灣地區液化潛能製圖,國立中央大學應用地質研究所,碩士論文。
Abrahamson, N., Gregor, N., & Addo, K. (2016). BC Hydro Ground Motion Prediction Equations for Subduction Earthquakes. Earthquake Spectra, 32(1), 23-44.
Allen, T. I., & Wald, D. J. (2009). On the Use of High-Resolution Topographic Data as a Proxy for Seismic Site Conditions (VS30). Bulletin of the Seismological Society of America, 99(2A), 935-943.
Anbazhagan, P., Uday, A., Moustafa, S. S. R., & Al-Arifi, N. S. N. (2017). Soil void ratio correlation with shear wave velocities and SPT N values for Indo-Gangetic basin. Journal of the Geological Society of India, 89(4), 398-406.
Building Seismic Safety Council of the National Insititute of Building Sciences.(2020). NEHRP recommended seismic provisions for new buildings and other structures(FEMA P-2082-1). Washington, DC: Author.
Diehl J. (2001). GEOVision P-S Log Notes & Procedures.
Gutenberg, B. (1957). Effects of ground on earthquake motion. Bulletin of the Seismological Society of America, 47(3), 221-250.
Hardin, B. O. & Richart, F. E. (1963). Elastic Wave Velocities in Granular Soils. Journal of the Soil Mechanics and Foundations, 89, 33-66.
Imai, T. & Yoshimura, Y. (1970) Elastic Wave Velocity and Soil Properties in Soft Soil (in Japanese). Tsuchi-ToKiso, 18, 17-22.
Kanai, K., Tanaka, T., Morishita, T., & Osada, K. (1967). Observation of Microtremors.XI. : Matsushiro Earthquake Swarm Area. Bulletin of the Earthquake Research Institute, University of Tokyo., 44, 1297-1333.
Kuo, C.H., Wen, K.L., Hsieh, H.H., Lin, C.M., Chang, T.M., & Kuo, K.W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129-130, 68-75.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Chang, T. M., Lin, C. M., & Chen, C. T. (2011). Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering, 31(3), 431-
439.
Kwok, O. L. A., Stewart, J. P., Kwak, D. Y., & Sun, P.L. (2018). Taiwan-Specific Model for VS30 Prediction Considering Between-Proxy Correlations. Earthquake Spectra. 34(4), 1973-1993.
Lambe, T.W., & Whitman, R.V. (1979) Soil Mechanics. SI Version, Wiley, New York.
Lee, C.T., & Tsai, B.R. (2008). Mapping Vs30 in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 617-682.
Ohsaki, Y., & Iwasaki, R. (1973). On Dynamic Shear Moduli and Poisson’s Ratios of Soil Deposits. Soils and Foundations, 13(4), 61-73.
Ohta, Y., & Goto, N. (1978). Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake Engineering and Structural Dynamics 6(2), 167-187.
Rahimi, S., Wood, C. M., & Wotherspoon, L. M. (2020). Influence of soil aging on SPT-Vs correlation and seismic site classification. Engineering Geology, 272, 105653.
Robertson, P. K., Sasitharan, S., Cunning, J. C., & Sego, D. C. (1995). Shear-wave velocity to evaluate in-situ state of ottawa sand. Journal of Geotechnical Engineering divison, 121(3), 262-273.
Roesler, S. K. (1979). Anisotropic Shear Modulus due to Stress Anisotropy. Journal of Geotechnical Engineering divison, 105(7), 871-880.
Sykora, D. (1987). Examination of Existing Shear Wave Velocity and Shear Modulus Correlations in Soils. Vicksburg, Mississippi, United States of America: Department of the ARMY Waterways Experiment Station Corps of Engineers.
Tsai, C.C., Kishida, T., & Kuo, C.H. (2019). Unified correlation between SPT–N and shear wave velocity for a wide range of soil types considering strain-dependent behavior. Soil Dynamics and Earthquake Engineering, 126, 105783