| 研究生: |
黃信博 Hsin-Bo Huang |
|---|---|
| 論文名稱: |
利用多目標最佳化演算法實作以混搭為基礎適性化程式設計學習 Mashup-based Adaptive Programming Learning with Multi-Objective Optimization Algorithm |
| 指導教授: |
楊鎮華
Stephen J.H. Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系在職專班 Executive Master of Computer Science & Information Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 適性系統 、基因演算法 、多目標最佳化 、混搭 、適性化學習 |
| 外文關鍵詞: | Multi-objects optimization, Mashup, Adaptive learning, Genetic Algorithm, Adaptive application |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的程式設計課程教學方式隨著資訊科技的引領邁入數位化教學的新世代,也讓程式設計課程教材更生動活潑且便利。近年來,網路Web 2.0的興起,提供學習者多元化的網路服務,其中一個技術是混搭(Mashup),混搭不僅能夠整合網際網路上多個資源與功能,更能創造新的服務,他們之間也能進行資訊的溝通。因此,混搭開啟了數位學習新的學習方法,學習者可透過混搭服務進行數位學習。本論文提出一個以混搭服務為基礎的適性化程式設計學習,本系統會自動的依據學習者的程式設計概念能力、學習目標、社群推薦度、學習語言、學習活動地點等學習情境,利用多目標最佳化演算法進行適性化學習服務組合,最後產生一組適性化教材。本系統應用在智慧型程式設計教學系統裡,將促進以能力為導向之程設教學培養的實現。
Because the computer technology is involved, the traditional programming language teaching class methods get into another new era, digital class. It also makes the programming language class’ material more convenient and colorful. Recently, Web 2.0 provides learners more diverse internet service, one of them is Mashup. Mashup not only integrate many resources and functionalities of internet, but can create new services. Moreover, data communication is feasible among them. Therefore, Mashup creates a new way for digital learning. Learners can do digital learning through it. This thesis provides an adaptive learning of programming language, which is based on Mashup services. Our system will generate a set of adaptive learning material according to the ability of program learner, the learning objectives, the social recommended degrees, learning language, learning location, and adaptive learning widgets from Multi-Objective Optimization algorithm. Our system is widely used in intelligent programming teaching systems, to make competency-based training and process-oriented teaching come true.
Abido, M.A. (2008). Multiobjective particle swarm optimization for optimal power flow problem. Power System Conference, 2008. MEPCON 2008. 12th International Middle-East, 392-396.
Alexander, B. (2006). Web 2.0: A new wave of innovation for teaching and learning?. EDUCAUSE Review, 41(2), 32-44.
Alfonzetti, S., Dilettoso, E. & Salerno, N. (2006). Simulated annealing with restarts for the optimization of electromagnetic devices. Magnetics, IEEE Transactions on, 42(4), 1115 - 1118.
Armstrong, R., D. Freitag, T. Joachims & T. Mitchell (1995). WebWatcher: A learning apprentice for the World Wide Web. AAAI Spring Symposium on Information Gathering from Distributed, Heterogeneous Environments, Stanford, CA.
Bandyopadhyay, S.,Saha, S., Maulik, U. & Deb, K. (2008). A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. Evolutionary Computation, IEEE Transactions on, 12(3), 269 - 283.
Banzhaf, Wolfgang., Nordin, Peter., Keller, Robert. & Francone, Frank. (1998). Genetic Programming - An Introduction. Morgan Kaufmann, San Francisco, CA
Berners-Lee, T. (1999). Weaving the Web, Orion Business Books.
Brusilovsky, P. (1996). Methods and Techniques of Adaptive Hypermedia. User Modeling and User-Adapted Interaction (6), 87-129.
Brusilovsky, P. (1999). Adaptive and Intelligent Technologies for Web-based Education. Künstliche Intelligenz. Special Issue on Intelligent Systems and Teleteaching, 4, 19-25.
Brusilovsky, P., Schwarz, E. & Weber, G. (1996). ELM-ART: An intelligent tutoring system on World Wide Web. Proceedings of the Third International Conference on Intelligent Tutoring Systems, ITS-96, Montreal, Lecture Notes in Computing Science, 1086, 261-269.
Brusilovsky, P., Schwarz, E. & Weber, G. (1996). A Tool for Developing Adaptive Electronic Textbooks on WWW. Proceedings of the WebNet''96 Conference, 64-69.
Bryan, K., Cunningham, P. & Bolshakova, N. (2006). Application of Simulated Annealing to the Biclustering of Gene Expression Data. Information Technology in Biomedicine, IEEE Transactions on, 10(3), 519 - 525.
Bull, S., Cui, Y., McEnvoy, A.T., Reid, E., & Yang, W. (2004). Roles for Mobile Learners Models. Proceedings of the 2nd IEEE Workshop on Wireless and Mobile Technologies in Education (WMTE ’04), 124-128.
Bull, S., Yanchun Cui, McEvoy, A.T., Reid, E. & Wei Yang (2004). Roles for mobile learner models. Wireless and Mobile Technologies in Education, 2004. Proceedings. The 2nd IEEE International Workshop on, 124- 128.
Carr, B. & Goldstein, I. P. (1977). Overlays. A theory of modeling for computer-aided instruction. AI Lab Meno 406, MIT, Cambridge, Massachusetts.
Castelli, V., Oblinger, D. & Bergman, L. (2007). Augmentation-Based Learning combining observations and user edits for Programming-by-Demonstration. Knowledge-Based Systems, 20(6), 575-591.
Cerny, V.,(1985). Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm, J. Opt. Theory Appl., 45, 1, 41-51.
Coello Coello, C.A., Toscano Pulido, G. & Salazar Lechuga, M. (2004). Handling Multiple Objectives With Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation( 8) 256–279.
Cristea, A., Hendrix, M. & Nejdl, W. (2006). Automatic and manual annotation using flexible schemas for adaptation on the semantic desktop. Proc. of the 1st European Conference on Technology Enhanced Learning ECTEL06, Springer, LNCS, 4227, 88–102.
Cui, Y. & Bull, S. (2005). Context and learner modelling for the mobile foreign language learner. System, 33(2), 353-367.
Davis Fred D., Bagozzi Richard P. & Warshaw Paul R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
De Bra, P., Aerts, A., Berden, B., Lange, B.d., Rousseau, B., Santic, T., Smits, D. & Stash, N. (2003). AHA! The adaptive hypermedia architecture. Proceedings of the fourteenth ACM conference on Hypertext and hypermedia. ACM Press, Nottingham, UK.
Deb, K., S. Agrawal, A. Pratap & T. Meyarivan (2000). A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. M. S. et al. (Ed.), Parallel Problem Solving from Nature – PPSN VI, Berlin, 849–858.
Dolog, P. & Nejdl, W. (2003). Using UML and XMI for generating adaptive navigation sequences in web-based systems. Proceedings of UML .
Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm theory. in Proceedings of the Sixth International Symposium on Micro Machine and Human Science. MHS ''95., 39-43.
Farzan, R. & Brusilovsky, P. (2006). Social navigation support in a course recommendation system. Proc. of AH06 Springer, LNCS, 4018, 91–100.
Garrido, A., Onaindia, E. & Sapena, O. (2008). Planning and scheduling in an e-learning environment. A constraint-programming-based approach. Engineering Applications of Artificial Intelligence, 21(5), 733-743.
Goffe, W.L., G.D. Ferrier & J. Rogers, (1994). Global optimisation of statistical functions with simulated annealing. J. Econometrics 60 (1/2), 65-100.
Goodwin, L. & Sanati, M. (1986). Learning computer programming through dynamic representation of computer functioning: evaluation of a new learning package for Pascal. International Journal of Man-Machine Studies, 25(3), 327-341.
Gutiérrez, S. & Pardo. A. (2007). Sequencing in Web-Based education: Approaches, Standards and Future Trends. Studies in Computational Intelligence (SCI), 62, 83–117.
Gutiérrez, S., Pardo, A. & Kloos, C.D. (2004). Beyond simple sequencing: Sequencing of learning activities using hierarchical graphs. Web-Based Education .
Holland, J. (1975). Adaptation In Natural and Artificial Systems. Michigan (USA): The University of Michigan Press.
Hu, X., R.C. Eberhart & Y. Shi. (2003). Swarm intelligence for permutation optimization: a case study of n-queens problem. Proceedings of the 2003 IEEE Swarm Intelligence Symposium, 3- 246.
Huang, T. C., Huang, Y. M. & Cheng, S. C. (2007). Automatic and Interactive e-Learning Auxiliary Material Generation utilizing Particle Swarm Optimization. Expert Systems with Applications.
Hwang, W.Y., Wang, C.Y., Hwang, G.J., Huang, Y.M. & Huang, S. (2008). A web-based programming learning environment to support cognitive development. Interacting with Computers, 20(6). 24-534.
Jehng, J.C.J. & Chan, T.W. (1998). Designing computer support for collaborative visual learning in the domain of computer programming. Computers in Human Behavior, 14(3), 429-448.
Jin, Y. & Sendhoff, B. (2008). Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 38( 3), 397 - 415.
Julio, E., Alvarez-Benitez, Richard, M., Everson & Jonathan E. Fieldsend (2005). A MOPSO algorithm based exclusively on pareto dominance concepts. Third International Conference on Evolutionary Multi-Criterion Optimization, EMO 2005., 459–473.
K. Deb (2001). Multiobjective Optimization Using Evolutionary Algorithms. Chichester, U.K.: Wiley.
Kari, L. & Rozenberg, G. (2008). The many facets of natural computing. Communications of the ACM, 51, 72-83.
Kennedy, J. & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks.4. 1942-1948.
Kennedy, J. & Eberhart, R.C. (1995). Particle Swarm Optimization. Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, New Jersey, IEEE Service Center, 1942–1948.
Kennedy, J., & Eberhart, R.C. (1997). A discrete binary version of the particle swarm algorithm. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ. 4104-4108.
Kirkpatrick, S. (1983). Optimization by simulated annealing. Science 220,34, 5-6, 976-986.
Kobsa, A., D. Müller & A. Nill (1994). KN-AHS: An adaptive hypertext klient of the user modeling system BGP-MS. 4-th International Conference on User Modeling, yannis, MA, 31-36.
Laumanns, M., Thiele, L., Deb, K. & Zitzler, E.(2002). Combining Convergence and Diversity in Evolutionary Multi-objective Optimization. Evolutionary Computation, 10, 263–282.
Lee, T. B. & Fischetti, M. (1999). Weaving the Web. Orion Business Books, 226.
Li, E.Y., Yen, H.J.R. & Cheng, C.Y.J. (2008). A fit-gap analysis of e-business curricula and job demand in Taiwan and the US. Computers & Education, 51(3), 969-987.
Mason, R. & Rennie, F. (2007). Using Web 2.0 for learning in the community. The Internet and Higher Education, 10, 196–203.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., & Teller, A.H. (1953). Equation of state calculation by fast computing machines. Journal of Chemical Physics, 21, 1087-92.
Metropolis,N., A. Rosenbluth, M. Rosenbluth, A. Teller & E. Teller (1953). Equation of State Calculations by Fast Computing Machines. J. Chem. Phys.,21, 6, 1087-1092.
Mia, K. & Woolf, B. P. (1998). Curriculum Sequencing in a Web-based Tutor. Proceedings of Intelligent Tutoring ystems.
Mitrovic, A. & Martin, B. (2002). Evaluating the effects of open student models on learning. Proc. 2nd Int. Conf on Adaptive Hypermedia and Adaptive Web-based Systems AH 2002, Malaga Spain, LCNS 2347, 296-305.
Mohan, R., Smith, J. R., Li & C.-S. (1999). Adapting Multimedia Internet Content for Universal Access. IEEE Transactions on Multimedia, 1(1):104-114.
Murugesan, S. (2007). Understanding Web 2.0. IT Professional, 9(4), 34 – 41.
Nahman, J.M. & Peric, D.M. (2008). Optimal Planning of Radial Distribution Networks by Simulated Annealing Technique. Power Systems, IEEE Transactions on, 23(2), 790 - 795.
Papasalouros, A., Retalis, S. & Papaspyrou, N.(2004). Semantic description of educational adaptive hypermedia based on a conceptual model. Educational Technology and Society, 7(4).
Papastergiou, M. (2009). Digital Game-Based Learning in high school Computer Science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1-12.
Patriarcheas, K. & Xenos, M. (2008). Modelling of distance education forum: Formal languages as interpretation methodology of messages in asynchronous text-based discussion. Computers & Education, In Press, Corrected Proof.
Peter, J., Angeline, V.W. Porto, N., Saravanan, D. Waagen, & A.E. Eiben (1998). Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. Evolutionary Programming VII. 7th International Conference, EP 98,1447, 601–610.
Semet, Y., Lutton, E. & Collet, P. (2003). Ant colony optimisation for e-learning: Observing the emergence of pedagogical suggestions. Swarm Intelligence Symposium, 2003. SIS ''03. Proceedings of the 2003 IEEE, 46- 52.
Sen, S., harper, F.M., LaPitz, A., Riedl, J. (2007). The quest for quality tags. Proceedings of the 2007 international ACM conference on Supporting group work, 361-370.
Shlomo Berkovsky, Tsvi Kuflik & Francesco Ricci (2009). Cross-representation mediation of user models. User Modeling and User-Adapted Interaction, 19(1-2), 35 - 63.
Sierra, M.R. & Coello, C.A.C. (2005). Improving PSO-based multi-objective optimizationusing crowding, mutation and ε-dominance. In Third International Conference on Evolutionary Multi-Criterion Optimization, EMO2005 , 505–519.
Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C. & Misra, R. (2008). Dominance-Based Multiobjective Simulated Annealing. Evolutionary Computation, IEEE Transactions on, 12(3), 323 - 342.
Spoerri, A. (2004). Coordinated Views and Tight Coupling to Support Meta Searching. Proceedings of the 2nd International Conference on Coordinated and Multiple Views in Exploratory Visualization, 39-48.
Spoerri, A. (2004). RankSpiral: Toward Enhancing Search Result Visualizations. Proceedings IEEE Information Visualization Symposium, 18.
Spoerri, A. (2004). Visual Editor for Composing Meta Searches. Proceedings of the 67th Annual Meeting of the American Society for Information Science and Technology (ASIST 2004), 373 – 382.
Spoerri, A. Rutgers Univ. & Brunswick (2007).Visual Mashup of Text and Media Search Results. Information Visualization, 2007. IV ''07. 11th International Conference, 216-221.
Srinivas, N. & Deb, K. (1994). Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248.
Su, W. P. (1995). Simulated annealing as a tool for Ab initio phasing in X-ray crystallography. Acta Cryst. A51, 845-849.
Thang, M. D., Dimitrova, V. & Djemame, K. (2007). Personalised mashups: Opportunities and challenges for user modeling. Proceedings of the 11thInternational Conference on User Modeling, Corfu, Greece. Springer., 4511, 415-419.
Ullrich, C., Borau, K., Luo, H., Tan, X., Shen, L. & Shen, R. (2008). Why Web 2.0 is Good for Learning and for Research: Principles and Prototypes. WWW 2008, Beijing, China,705-714.
Wang, H.C., Chang, C.Y. & Li, T.Y. (2008). Assessing creative problem-solving with automated text grading. Computers & Education, 51(4), 450-1466.
Weber, G. & Specht, M. (1997). User Modeling and Adaptive Navigation Support in WWW-based Tutoring Systems. Proceedings of the Sixth International Conference on User Modeling, 289-300.
Wild, F., Mödritscher, F. & Sigurdarson, S.E.(2008). Designing for Change: Mash-Up Personal Learning Environments. eLearning Papers, 9.
Wiley, D. A. (2000). Connecting LOs to instructional design theory: A definition, a metaphor, and a taxonomy. The Instructional Use of LOs, D. A. Wiley, Ed.
Youssef, H., Brigitte, C.-M. & Noureddine, Z. (2003). Lower bounds and multiobjective evolutionary optimization for combined maintenance and production scheduling in job shop. Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA ''03. IEEE Conference, 2, 95- 100.
Zatarain Cabada, R., Barron Estrada, M.L., Urias Barrientos, E., Osorio Velasquez, M. & Reyes Garcia, C.A. (2008). Multiple Intelligence Tutoring Systems for Mobile Learners. Advanced Learning Technologies, 2008. ICALT ''08. Eighth IEEE International Conference on, 1-5, 652 – 653.