跳到主要內容

簡易檢索 / 詳目顯示

研究生: 趙嘉詮
Jia-Quan Zhao
論文名稱: 基於決策反饋之波束追蹤技術用於 MIMO-OFDM 毫米波通訊系統
Decision Feedback Based Beam Tracking Technique for mmWave MIMO-OFDM Systems
指導教授: 張大中
Dah-Chung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: MIMO-OFDM混合波束成型均勻線性陣列分層波束訓練決策反饋無跡卡爾曼波束追蹤
外文關鍵詞: MIMO-OFDM, Hybrid beamforming, ULA, Hierarchical beam training, Decision Feedback, Unscented Kalman Filter, Beam tracking
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有豐富頻譜資源的毫米波 (Millimeter wave, mmWave)
    通訊系統被視為下一時代無線通訊系統的潛力技術,在高頻
    段傳輸可獲得每秒十億位元的高資料速率,但同時也引入了
    巨大的傳輸損耗使通訊品質大幅下降,為了確保良好的通訊
    品質,高指向性的波束成型 (Beamforming) 被視為毫米波通訊
    系統中不可或缺的關鍵技術,因此精準的訊號出發角 (Angle
    of Departure, AoD)、入射角 (Angle of Arrival, AoA) 及路徑增益顯得特別重要。特別是移動通訊 (mobile communications) 場景,環
    境的些許變化導致傳送端與接收端的波束錯位,使接收訊號
    的品質明顯下降,因此角度與路徑增益的估計與追蹤成為毫米波通訊系統的核心研究主題。本論文考慮單一使用者多輸
    入多輸出正交分頻多工 (Multiple-Input Multiple-Output Orthogonal
    Frequency-Division Multiplexing , MIMO-OFDM) 的均勻線性陣列
    (Uniform Linear Array, ULA) 天線架構,並假設傳送端與接收端使
    用全連接混合波束成型 (full connection hybrid beamforming) 架構,
    在初始階段,利用分層波束訓練 (hierarchical beam training) 對空間
    進行粗掃描 (coarse search) 及細掃描 (fine search),使獲得最佳的
    波束匹配,並假設傳送端與接收端的波束中心角為初始估計的訊
    號出發角、入射角,而初始路徑增益由最小平方法 (least squares)
    求出,接著利用正交匹配追蹤 (Orthogonal Matching Pursuit, OMP)
    取得混合波束成型架構之預編碼器 (precoder) 與結合器 (combiner)
    權重。我們採用多路徑二維通道 (multi-path two-dimensional (2D)
    channel) 為通道環境,並提出基於決策反饋 (Decision Feedback) 無
    跡卡爾曼濾波器 (Unscented Kalman Filter) 自適應演算法,不需要
    UKF 波束追蹤前導序列 (preamble) 也能克服時變的傳送端與接收
    端波束匹配,達到高效率低時間成本的波束追蹤 (beam tracking),
    並利用模擬結果進行性能分析與討論。


    Millimeter-Wave (mmWave) communication system with abundant spectrum resources is regarded as the potential technology of the
    next-generation wireless communication system. The high data rate of
    one gigabit per second can be obtained in high-frequency band transmission, but it also introduces a huge transmission loss that greatly reduces communication quality. In order to ensure good communication
    quality, beamforming with high directivity is regarded as an indispensable key technology in the mmWave communication system. Therefore,
    the precise signal Angle of Departure ( AoD), Angle of Arrival (AoA),
    and path gain are critical. Especially in mobile communications scenarios, slight changes in the environment cause the beams at the transmitter and receiver to be misaligned, which significantly degrades the quality of
    the received signal. Therefore, the estimation and tracking of angle and
    path gains have become the core research topics of the mmWave communication systems. This paper considers a single-user Multiple-Input with high efficiency and low time overhead. finally, the simulation results are used for performance analysis and discussion.
    Multiple-Output Orthogonal Frequency-Division Multiplexing (MIMOOFDM) Uniform Linear Array (ULA) antenna architecture. It assumes
    that the full connection hybrid beamforming architecture is used for both
    the transmitter and receiver. In the initial stage, hierarchical beam training is used to perform coarse search and fine search on the angle space, to
    obtain the best beam matching, and to assume that the beam center angles
    of the transmitter and receiver end are the initially estimated signal AoD
    and AoA, respectively, and the initial path gain is obtained by the Least
    Squares (LS) method, Orthogonal Matching Pursuit(OMP) obtains the
    precoder and combiner weights of the hybrid beamforming architecture.
    We use a multi-path two-dimensional (2D) channel as the channel environment, and propose an adaptive algorithm for the decision feedback
    based Unscented Kalman Filter(UKF), which does not require UKF beam
    tracking preambles and can also overcome the time-varying beam matching between the transmitter and the receiver, and achieve beam tracking

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 第 1 章序論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 毫米波通訊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 正交分頻多工 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 多輸入多輸出天線架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 數位波束成型架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 類比波束成型架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 混合波束成型架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 全連接與子連接混合波束成型架構 . . . . . . . . . . . . . . . . . . . . . . 12 1.9 章節架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第 2 章系統模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 傳輸系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 通道模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 第 3 章波束訓練 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 碼本架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 多解析度碼本設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 分層波束訓練 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 路徑增益估計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第 4 章波束成型設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1 最佳混合預編碼器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 最佳混合結合器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 第 5 章基於決策反饋之適應追蹤 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.1 無跡卡爾曼演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 第 6 章系統模擬與結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1 波束訓練初始估計結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 基於決策反饋之無跡卡爾曼濾波器追蹤表現分析 . . . . . . . . . . 56 6.3 基於決策反饋之無跡卡爾曼濾波器頻譜效率與位元錯誤率 分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.1 基於決策反饋之無跡卡爾曼濾波器頻譜效率分析 . . . . . . 66 6.3.2 基於決策反饋之無跡卡爾曼濾波器位元錯誤率分析 . . . . 69 第 7 章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    [1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile
    broadband systems,” IEEE Communications Magazine, vol. 49,
    no. 6, pp. 101–107, 2011.
    [2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang,
    G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter
    wave mobile communications for 5g cellular: It will work!” IEEE
    Access, vol. 1, pp. 335–349, 2013.
    [3] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
    A. Ghosh, “Millimeter wave beamforming for wireless backhaul
    and access in small cell networks,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391–4403, 2013.
    [4] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications
    for fifth-generation (5g) wireless networks—with a focus on propagation models,” IEEE Transactions on Antennas and Propagation,
    vol. 65, no. 12, pp. 6213–6230, 2017.
    [5] “Ieee draft amendment to ieee standard for information technology–
    telecommunications and information exchange between systems–
    local and metropolitan area networks–specific requirements–part
    15.3: Wireless medium access control (mac) and physical layer
    (phy) specifications for high rate wireless personal area networks
    (wpans): Amendment 2: Millimeter-wave based alternative physical layer extension,” IEEE Unapproved Draft Std P802.15.3c/D08,
    Mar 2009, 2009.
    [6] “Ieee standard for information technology–telecommunications and
    information exchange between systems–local and metropolitan area
    networks–specific requirements-part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 3: Enhancements for very high throughput in the 60 ghz band,”IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012,
    as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa2012), pp. 1–628, 2012.
    [7] I. Ahmed, H. Khammari, A. Shahid, A. Musa, K. S. Kim,
    E. De Poorter, and I. Moerman, “A survey on hybrid beamforming techniques in 5g: Architecture and system model perspectives,”
    IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 3060–
    3097, 2018.
    [8] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
    “Spatially sparse precoding in millimeter wave mimo systems,”
    IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp.
    1499–1513, 2014.
    [9] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M.
    Sayeed, “An overview of signal processing techniques for millimeter wave mimo systems,” IEEE Journal of Selected Topics in Signal
    Processing, vol. 10, no. 3, pp. 436–453, 2016.
    [10] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel
    estimation and hybrid precoding for millimeter wave cellular systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
    no. 5, pp. 831–846, 2014.
    [11] L. Dai, X. Gao, S. Han, I. Chih-Lin, and X. Wang, “Beamspace
    channel estimation for millimeter-wave massive mimo systems with
    lens antenna array,” in 2016 IEEE/CIC International Conference on
    Communications in China (ICCC), 2016, pp. 1–6.
    [12] A. Alkhateeb, G. Leus, and R. W. Heath, “Compressed sensing based multi-user millimeter wave systems: How many measurements are needed?” in 2015 IEEE International Conference
    on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp.
    2909–2913.
    [13] T. Kim and D. J. Love, “Virtual aoa and aod estimation for sparse
    millimeter wave mimo channels,” in 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 146–15.

    [14] X. Xin and Y. Yang, “Robust beam tracking with extended kalman
    filtering for mobile millimeter wave communications,” in 2019
    Computing, Communications and IoT Applications (ComComAp),
    2019, pp. 172–177.
    [15] C. Lin, G. Y. Li, and L. Wang, “Subarray-based coordinated beamforming training for mmwave and sub-thz communications,” IEEE
    Journal on Selected Areas in Communications, vol. 35, no. 9, pp.
    2115–2126, 2017.
    [16] S. Noh, M. D. Zoltowski, and D. J. Love, “Multi-resolution codebook and adaptive beamforming sequence design for millimeter
    wave beam alignment,” IEEE Transactions on Wireless Communications, vol. 16, no. 9, pp. 5689–5701, 2017.
    [17] J. He, T. Kim, H. Ghauch, K. Liu, and G. Wang, “Millimeter wave
    mimo channel tracking systems,” in 2014 IEEE Globecom Workshops (GC Wkshps), 2014, pp. 416–421.
    [18] S. Shaham, M. Kokshoorn, M. Ding, Z. Lin, and M. Shirvanimoghaddam, “Extended kalman filter beam tracking for millimeter
    wave vehicular communications,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), 2020, pp.
    1–6.
    [19] C. Zhang, D. Guo, and P. Fan, “Tracking angles of departure and
    arrival in a mobile millimeter wave channel,” in 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1–6.
    [20] S. Jayaprakasam, X. Ma, J. W. Choi, and S. Kim, “Robust beamtracking for mmwave mobile communications,” IEEE Communications Letters, vol. 21, no. 12, pp. 2654–2657, 2017.
    [21] B. Liu, W. Tan, H. Hu, and H. Zhu, “Hybrid beamforming for
    mmwave mimo-ofdm system with beam squint,” in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile
    Radio Communications (PIMRC), 2018, pp. 1422–1426.
    [22] Z. Sha, Z. Wang, and S. Chen, “Harmonic retrieval based baseband channel estimation for millimeter wave ofdm systems,” IEEE
    Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2668–
    2681, 2019.
    [23] H. Van Trees, Optimum Array Processing: Part IV of Detection,
    Estimation, and Modulation Theory, ser. Detection, Estimation, and
    Modulation Theory. Wiley, 2002.
    [24] P. Bello, “Characterization of randomly time-variant linear channels,” IEEE Transactions on Communications Systems, vol. 11,
    no. 4, pp. 360–393, 1963.
    [25] H. Xu, V. Kukshya, and T. Rappaport, “Spatial and temporal characteristics of 60-ghz indoor channels,” IEEE Journal on Selected
    Areas in Communications, vol. 20, no. 3, pp. 620–630, 2002.
    [26] V. Va, H. Vikalo, and R. W. Heath, “Beam tracking for mobile millimeter wave communication systems,” in 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2016,
    pp. 743–747.
    [27] J. Lim, H.-M. Park, and D. Hong, “Beam tracking under highly
    nonlinear mobile millimeter-wave channel,” IEEE Communications
    Letters, vol. 23, no. 3, pp. 450–453, 2019.
    [28] J. Meditch, Stochastic Optimal Linear Estimation and Control, ser.
    Electronics Series. McGraw-Hill, 1969.
    [29] M. Pätzold, Mobile Fading Channels, ser. Online access: EBSCO
    Computers & Applied Sciences Complete. Wiley, 2002.
    [30] L. Liu, H. Ju, X. Fang, Y. Long, and R. He, “Systematic design of
    radar detection under ieee 802.11ad framework,” in 2021 IEEE 94th
    Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1–5.
    [31] Z. Guo, X. Wang, and W. Heng, “Millimeter-wave channel estimation based on 2-d beamspace music method,” IEEE Transactions on
    Wireless Communications, vol. 16, no. 8, pp. 5384–5394, 2017.
    [32] H. Li, M. Li, Q. Liu, and A. L. Swindlehurst, “Dynamic hybrid beamforming with low-resolution pss for wideband mmwave
    mimo-ofdm systems,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 9, pp. 2168–2181, 2020.
    [33] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on
    Information Theory, vol. 53, no. 12, pp. 4655–4666, 2007.
    [34] L. Rebollo-Neira and D. Lowe, “Optimized orthogonal matching
    pursuit approach,” IEEE Signal Processing Letters, vol. 9, no. 4,
    pp. 137–140, 2002.
    [35] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, ser.
    Prentice-Hall information and system sciences series. Prentice
    Hall, 2000. [Online]. Available: https://books.google.com.tw/
    books?id=zNJFAQAAIAAJ
    [36] E. Wan and R. Van Der Merwe, “The unscented kalman filter for
    nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive
    Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153–158.
    [37] S. G. Larew and D. J. Love, “Adaptive beam tracking with the unscented kalman filter for millimeter wave communication,” IEEE
    Signal Processing Letters, vol. 26, no. 11, pp. 1658–1662, 2019.
    [38] F. W. Vook, A. Ghosh, E. Diarte, and M. Murphy, “5g new radio:
    Overview and performance,” in 2018 52nd Asilomar Conference on
    Signals, Systems, and Computers, 2018, pp. 1247–1251.

    QR CODE
    :::