| 研究生: |
高帆萱 Fan-Hsuan Kao |
|---|---|
| 論文名稱: | An improved nonparametric estimator of distribution function for bivariate competing risks model |
| 指導教授: |
江村剛志
Takeshi Emura |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 二維存活函數 、無母數估計量 、競爭風險 、具體-理由分布函數 、右設限 |
| 外文關鍵詞: | Bivariate survival function, Nonparametric estimation, Competing risk, Cause-specific distribution function, Right censoring |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在處理競爭風險的資料時,由於造成特定物件失效的原因有許多種,因此估計特定失效物件的具體-理由分布函數是相當重要的。然而,在面對多維的失效時間時,即使是二維資料其亦具有相當難度。本篇論文中,我們考慮Sankaran 等人在 (2006) 所提出的一種無母數的二維具體-理由分布函數估計量。在此,我們提出一個改善原有方法的一種新的無母數估計量。我們以理論上以及數值上去展示我們的估計量較原有的估計量有更小的均方誤差。我們亦證明此估計量的一致性。針對此估計量的表現我們將進行模擬研究。最後我們把此有效的方法利用到老鼠與蠑螈的資料上並以3D圖來表現其效果。
For competing risks data, it is important to estimate the cause-specific distribution function of a particular failure event, which is the failure probability in the presence of other risks. However, if multiple failure events per subject are available, estimation procedures become challenging, even for the bivariate case. In this thesis, we consider the nonparametric estimation of bivariate cause-specific distribution function which is discussed in Sankaran et al. (2006). In particular, we propose a new nonparametric estimator which improves upon the estimator of Sankaran et al. It is shown theoretically and numerically that the proposed estimator has smaller mean square error than the existing one. The consistency of the proposed estimator is also established. A simulation study is conducted to investigate the performance of the proposed estimator. The usefulness of the method is illustrated by the salamander data and mouse data.
[1] M.G. Akritas, Ingrid van Keilegom, Estimation of bivariate and marginal distributions with censored data, J. R. Stat Soc, Ser. B 65 (2003) 457-471.
[2] P.K. Andersen, Borgan, R.D. Gill, N. Keiding, Statistical Models Based on Counting Processes, Springer, New York, 1993.
[3] A.A. Antony, P. G. Sankaran, Estimation of bivariate survivor function of competing risk models under censoring, J. Stat. Theory Appl. 4 (2005) 401-423.
[4] A.W. Van Der Vaart, J.A. Wellner, Weak Convergence and Empirical Process, Springer, New York, 1996.
[5] Y. Cheng, J.P. Fine, Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data, Biometrika 95 (2008) 233-240.
[6] Y.-H. Chen, N. Chatterjee, R.J. Carroll, Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies, J. Amer. Statist Assoc. 104 (2009) 220-233.
[7] K.L. Chung, A Course in Probability Theory, Academic Press, 2001
[8] D.G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika 65 (1978) 141-151.
[9] M.J. Crowder, Classical Competing Risks, Chapman and Hall/CRC, 2001
[10] D.M. Dabrowska, Kaplan-Meier estimate on the plane, Ann. Stat. 18 (1988) 1475-1489.
[11] D.M. Dabrowska, Kaplan-Meier estimate on the plane: weak convergence, LIL, and the bootstrap, J. Multivariate Anal. 29 (1989) 308-325.
[12] T. Emura, Y.-H. Chen, H.-Y. Chen, Survival prediction based on compound covariate under cox poportional hazard models, PLoS One 7(10) (2012) doi:10.1371 /joumal.pone.0047627.
[13] T. Emura, Y. Konno, Multivariate normal distribution approaches for dependently truncated data, Statistical Papers 53 (No.1) (2012a) 133-149.
[14] T. Emura, Y. Konno, A goodness-of-fit test for parametric models based on dependently truncated data, Comput. Statist. Data Anal. 56 (2012b) 2237-2250.
[15] R.J. Gray, A class of k-sample tests for comparing the cumulative incidence of a competing risk, Ann. Stat. 16 (1988) 1141-1154.
[16] N. Mantel, J.L. Ciminera, Use of log rank series in the analysis of litter-matched data on time to tumour appearance, Cancer Res. 39 (1979) 4308-4315.
[17] H. Michimae, T. Emura, Correlated evolution of phenotypic plasticity in metamorphic timing, J. Evol. Biol. 25 (2012) 1331-1339.
[18] P.G. Sankaran, A.A. Antony, Bivariate competing risks models under random left truncation and right censoring, Sankhya: The Indiam Journal of Statistics (2003-2007) 69 (2007) 425-447.
[19] P.G. Sankaran, J.F. Lawless, B. Abraham, A.A. Antony, Estimation of distribution function in bivariate competing risk models, Biom. J. 48 (2006) 399-410.
[20] P. Shen, Estimation of the bivariate cause-specific distribution function with doubly censored competing risks data, J. Stat. Plan. Inference 141 (2011) 2614-2621.
[21] P. Shen, Estimation of the bivariate cause-specific distribution functions with left-truncated competing risks data, Commun. Stat. Simul. Comput. 41:1 (2012) 99-110.
[22] R.L. Prentice, J. Cai, Covariate and survivor function estimation using censored multivariate failure time data, Biometrika 79 (1992) 495-512.
[23] W. Wang, M.T. Wells, Nonparametric estimations of the bivariate survival function under simplified censoring conditions, Biometrika. 84 (1997) 863-883.