| 研究生: |
朱思澔 Sz-Hau Chu |
|---|---|
| 論文名稱: |
生物啟發兩性雙離子自組裝抗汙塗層 Bio-inspired Zwitterionic Assemblies for Robust Antifouling Coatings |
| 指導教授: |
黃俊仁
Chun-Jen Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 非特異性吸附 、自組裝薄膜 、兩性雙離子氨基酸 、光趨動氧化奈米材料 、光熱治療 |
| 外文關鍵詞: | zwitterionic amino acid, nanomaterials colloidal stability, photo induced oxidation |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植入性醫療器材,由於長時間與血液、體液接觸,容易因為表面的蛋白質、微生物的非特異性吸附,進而引發儀器被組織包覆,效能、靈敏性受損,甚至造成凝血反應、微生物感染、血栓形成等問題。而目前的解決此問題的其中一項辦法為在醫療器材表面修飾一層抗貼附塗層以降低非特異性吸附,避免併發症的發生。其中以自組裝 (Self-Assembling)的修飾方法由於其步驟簡單、處理快速等特性尤為受到矚目。然而,也有許多學者認為,自組裝膜的表面穩定性與抗汙功效,會是其使用上的一大問題。
在本研究中,我們利用天然兩性雙離子氨基酸─半胱胺酸(Cysteine)、自行合成之半胱胺酸四級銨衍生物─半胱胺酸甜菜鹼(Cysteine betaine)和市面上常使用之親水性抗貼附材料─聚乙二醇(Polyethylene Glycol),自組裝於金基板上,利用水接觸角、X射線光電子能譜、掃描式隧道顯微鏡觀察修飾後表面的親水性質、表面元素組成及分子排列情形。並藉由細胞毒性試驗MTT、革蘭氏陽性菌表皮葡萄球菌(Staphylococcus epidermidis)和陰性菌綠膿桿菌(Pseudomonas aeruginosa)細菌貼附、3T3纖維母細胞貼附和蛋白質貼附,比較其化學穩定度、應用範圍及抗貼附能力。最後,將其修飾在空心金銀奈米殼(Hollow Ag@Au nanoshells) 上,調控溫度、鹽濃度、離子濃度、蛋白質貼附等變因,觀察其膠體穩定性並應用於近紅外光光熱治療。最後開發出一極具潛力之生物衍生兩性雙離子自組裝抗汙塗層。
Implantable medical devices are widely used in clinical medicine. However, they directly contact to blood or body fluid and nonspecific adsorption of protein or microorganisms may occur. This process will lead to decreased efficiency or sensitivity which further facilitates coagulation, infection or thrombus formation. Modification the surface of medical device with antifouling coatings may decrease the possibility of nonspecific adsorption and prevent formation of complications. Among them, modification by self-assembling is an easy and efficient way to improve the biocompatibility. Nevertheless, the stability and effectiveness of self-assembled monolayers (SAMs) is also an issue for long-term biomedical applications.
In this study, we used cysteine (natural sulfur-containing zwitterionic compounds), cysteine betaine (derivative of cycteine with quaternary ammonium group at its terminal end), and polyethylene glycol (a widely used hydrophilic antifouling material) to decorate with Au substrate through Au-thiol interaction. We arranged contact angle goniometer, X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscope (STM) to examine the hydrophilic property, surface elemental composition and molecular arrangement situation in this study. MTT cytotoxicity assays, bacterial adsorption test, 3T3 fibroblast cel�#(~sorption, and protein adsorption were also arranged to compare the range of application and antifouling capacity. Finally, the modification was applied to hollow gold silver nanoshells. After regulating temperature, ion concentration, and protein adsorption, we tested the colloid stability. This technique then applied to near-infrared photoelectron thermal therapy and developed into bio-derived zwitterionic assemblies for antifouling coatings with high potential in clinical implications.
1. Vertes, A., V. Hitchins, and K.S. Phillips, Analytical Challenges of Microbial Biofilms on Medical Devices. Analytical Chemistry, 2012. 84(9): p. 3858-3866.
2. Grainger, D.W., All charged up about implanted biomaterials. Nat Biotech, 2013. 31(6): p. 507-509.
3. Lichter, J.A., K.J. Van Vliet, and M.F. Rubner, Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. Macromolecules, 2009. 42(22): p. 8573-8586.
4. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718.
5. Lin, P., et al., Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosensors and Bioelectronics, 2013. 47(0): p. 451-460.
6. Ostuni, E., et al., A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir, 2001. 17(18): p. 5605-5620.
7. Luk, Y.-Y., M. Kato, and M. Mrksich, Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir, 2000. 16(24): p. 9604-9608.
8. Chang, Y., et al., A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir, 2008. 24(10): p. 5453-5458.
9. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
10. Whitesides, G., Poly(ethylene glycol) chemistry biotechnical and biomedical applications J. Milton Harris, Ed. Applied Biochemistry and Biotechnology, 1993. 41(3): p. 233-234.
11. Abuchowski, A., et al., Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. Journal of Biological Chemistry, 1977. 252(11): p. 3582-6.
12. Basu, B. and S. Nath, Fundamentals of Biomaterials and Biocompatibility, in Advanced Biomaterials. 2010, John Wiley & Sons, Inc. p. 1-18.
13. Jo, S. and K. Park, Surface modification using silanated poly(ethylene glycol)s. Biomaterials, 2000. 21(6): p. 605-616.
14. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry, 1977. 252(11): p. 3578-81.
15. Zhang, Z., et al., Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 2006. 22(24): p. 10072-10077.
16. Leckband, D., S. Sheth, and A. Halperin, Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. Journal of Biomaterials Science, Polymer Edition, 1999. 10(10): p. 1125-1147.
17. Finch, C.A., Poly(ethylene glycol) chemistry: Biotechnical and biomedical applications. Edited by J. Milton Harris. Plenum Publishing, New York, 1992. pp. xxi + 385, price $89.00. ISBN 0-306-44078-4. Polymer International, 1994. 33(1): p. 115-115.
18. Li, L., S. Chen, and S. Jiang, Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2007. 18(11): p. 1415-1427.
19. Estephan, Z.G., P.S. Schlenoff, and J.B. Schlenoff, Zwitteration As an Alternative to PEGylation. Langmuir, 2011. 27(11): p. 6794-6800.
20. Reece, J.B. and N.A. Campbell, Campbell biology / Jane B. Reece ... [et al.]. 2011, Boston: Benjamin Cummings : imprint of Pearson.
21. Vermette, P. and L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003. 28(2–3): p. 153-198.
22. Lewis, A.L., Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids and Surfaces B: Biointerfaces, 2000. 18(3–4): p. 261-275.
23. Holmlin, R.E., et al., Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir, 2001. 17(9): p. 2841-2850.
24. Kane, R.S., P. Deschatelets, and G.M. Whitesides, Kosmotropes Form the Basis of Protein-Resistant Surfaces. Langmuir, 2003. 19(6): p. 2388-2391.
25. Zhang, Z., S. Chen, and S. Jiang, Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
26. Schlenoff, J.B., Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014.
27. Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
28. Nuzzo, R.G., L.H. Dubois, and D.L. Allara, Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. Journal of the American Chemical Society, 1990. 112(2): p. 558-569.
29. Whitesides, G.M. and P.E. Laibinis, Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir, 1990. 6(1): p. 87-96.
30. Kao, W.-L., et al., Adsorption behavior of plasmid DNA on binary self-assembled monolayers modified gold substrates. Journal of Colloid and Interface Science, 2012. 382(1): p. 97-104.
31. Huang, C.-J., et al., Natural zwitterionic organosulfurs as surface ligands for antifouling and responsive properties. Biointerphases, 2014. 9(2): p. -.
32. Cohen-Atiya, M. and D. Mandler, Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry, 2003. 550–551(0): p. 267-276.
33. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. 2013: Academic press.
34. Bain, C.D., et al., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
35. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5–8): p. 151-257.
36. Lin, P., et al., Nonfouling Property of Zwitterionic Cysteine Surface. Langmuir, 2014. 30(22): p. 6497-6507.
37. Alswieleh, A.M., et al., Zwitterionic Poly(amino acid methacrylate) Brushes. Journal of the American Chemical Society, 2014. 136(26): p. 9404-9413.
38. Rosen, J.E. and F.X. Gu, Surface Functionalization of Silica Nanoparticles with Cysteine: A Low-Fouling Zwitterionic Surface. Langmuir, 2011. 27(17): p. 10507-10513.
39. Uvdal, K., P. Bodö, and B. Liedberg, l-cysteine adsorbed on gold and copper: An X-ray photoelectron spectroscopy study. Journal of Colloid and Interface Science, 1992. 149(1): p. 162-173.
40. Wang, H., et al., Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636.
41. Lee, S.-H., et al., Photooxidation of Amine-Terminated Self-Assembled Monolayers on Gold. The Journal of Physical Chemistry C, 2010. 114(23): p. 10512-10519.
42. Yu, M.K., et al., Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo. Angewandte Chemie International Edition, 2008. 47(29): p. 5362-5365.
43. Santra, S., et al., Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications. Advanced Materials, 2005. 17(18): p. 2165-2169.
44. Lin, Y.-S., et al., Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous. Chemistry of Materials, 2006. 18(22): p. 5170-5172.
45. Shanmugam, V., S. Selvakumar, and C.-S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews, 2014. 43(17): p. 6254-6287.
46. Pombo Garcia, K., et al., Zwitterionic-coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small, 2014. 10(13): p. 2516-29.
47. Vongsavat, V., et al., Ultrasmall Hollow Gold–Silver Nanoshells with Extinctions Strongly Red-Shifted to the Near-Infrared. ACS Applied Materials & Interfaces, 2011. 3(9): p. 3616-3624.
48. Jaque, D., et al., Nanoparticles for photothermal therapies. Nanoscale, 2014. 6(16): p. 9494-9530.
49. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotech, 2001. 19(4): p. 316-317.
50. Schubert, M.P., COMBINATION OF THIOL ACIDS WITH METHYLGLYOXAL. Journal of Biological Chemistry, 1935. 111(3): p. 671-678.
51. Rogers, S.J., Composite pK's of cysteine. Journal of Chemical Education, 1969. 46(4): p. 239.
52. Schoenfisch, M.H. and J.E. Pemberton, Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces. Journal of the American Chemical Society, 1998. 120(18): p. 4502-4513.
53. Chang, Y., et al., Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood. Advanced Functional Materials, 2013. 23(9): p. 1100-1110.
54. Cukierman, E., R. Pankov, and K.M. Yamada, Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 2002. 14(5): p. 633-640.
55. Espinoza, L., J.C. Hower, and S. Jiang, Influence of Salt and pH on the Adsorption of Fibrinogen and Lysozyme to Self-Assembled Monolayers Using a Surface Plasmon Resonance Sensor.
56. Li, L. and B. Li, Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst, 2009. 134(7): p. 1361-1365.
57. Min, Y., et al., Self-assembled encapsulation of graphene oxide/Ag@AgCl as a Z-scheme photocatalytic system for pollutant removal. Journal of Materials Chemistry A, 2014. 2(5): p. 1294-1301.
58. Shao, Q. and S. Jiang, Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. The Journal of Physical Chemistry B, 2014. 118(27): p. 7630-7637.