| 研究生: |
楊朝欽 Chao-chin Yang |
|---|---|
| 論文名稱: |
離子液體添加物於多元醇法還原前驅物製備奈米銀粒子或奈米銀線之研究 The study of ionic liquid additives on reduction of precursors by polyol method for the preparation of silver nanoparticles or silver nanowires. |
| 指導教授: |
劉陵崗
Ling-kang Liu 賴重光 Chung-kung Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 多元醇法 、一維銀線 、奈米銀線 、離子液體 |
| 外文關鍵詞: | Ionic liquid, Ag nanowire, polyol method, one-dimensional Ag wires |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要利用化學溶液法來製備奈米銀粒子或奈米銀線。我們使用多元醇法還原硝酸銀前驅物來製備奈米銀線,討論不同的反應溫度、反應時間、反應添加物用量、及使用離子液體種類的影響。最後,我們也將奈米銀線產物應用於表徵染料的表面增強拉曼訊號。奈米銀線的製備方式為利用離子液體添加物當作起始物與硝酸銀產生成核晶種, PVP當軟模板及介面活性劑,輔助銀成長出一維結構。
在實驗過程中,我們改變許多參數,追踪奈米銀粒子或奈米銀線的成長情況,並輔以SEM及TEM,分析了解更細微的結構、使用EDS檢驗奈米銀粒子或奈米銀線的元素成分、利用UV-Vis檢驗奈米銀型態不同的吸收峰訊,也利用粒徑分析儀確認粒徑分佈。實驗結果得知,以[BMIm]Br離子液體當做添加物時,反應1小時後,奈米銀線反應產率最佳,線徑約100~150 nm,線長約20 μm。以[BzMIm]Br離子液體當作添加物時,雖然對奈米銀線的反應產率不佳,但在180 ℃反應10~15 min即可快速產生奈米銀線,線徑約70~100 nm,線長10~20 μm。
One-dimensional Ag nanowires or Ag nanoparticles were prepared by polyol method in this study. The effects due to reaction temperature, reaction time, amount of ionic liquid additives, and the nature of ionic liquids were investigated. One of the final products was then applied to a SERS (Surface-enhanced raman signals) study on Nile blue chloride. In the beginning, the ionic liquid reaction with silver nitrate produced precipitates that work as nucleation seeds. We used PVP as a soft template to stablize the growth of one-dimensional Ag nanowires.
In the experiments, we have changed a number of parameters to monitor the growth of Ag nanoparticles and Ag nanowires. We have also followed the growth with SEM or TEM analyses to know more subtle structures. EDS equipped on SEM or TEM was used to analyze the wire or particle compostion. The UV-Vis data indicated different absorption maxima to reveal the types of Ag nanomaterial. The essay pointed out that, when [BMIm]Br was an additive, the reaction of 1h resulted in Ag nanowires with maxium yield, the diameter being about 100~150 nm, length about 20 μm. Although [BzMIm]Br as an additive showed poor yield of Ag nanowires, it however gave rapidly at 180 ℃ in 10 to 15 minutes, Ag nanowires with diameter about 70~100 nm, length about 10~20 μm.
1.Hurley, F. H.; Wier, T. P.; J., J. Electrochem. Soc. 1951, 98, 207.
2.Scheffler, T. B.; Hussey, C. L.; Seddon, K. R.; Kear, C. M.; Armitage, P. D. Inorg. Chem. 1983, 22, 2099.
3.Erbeldinger, M.; Mesiano, A.; Ruessell, A. J. Biotechnol. Prog. 2000, 16,1129.
4.Yanes, E. G.; Gratz, S. R.; Baldwin, M. J.; Robison, S. E.; Stalcup, A. M. Anal. Chem. 2001, 73, 3838.
5.Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.; Weizbicki, A.; Davis, J. H.; Rogers, R. D. Chem. Commun. 2001, 135.
6.Armstrong, D. W.; He, L.; Liu, Y.-S., Anal. Chem. 1999, 71, 3873.
7.Wei, G. T.; Yang, Z.; Lee, C. Y.; Yang, H. Y.; Chris Wang, C. R. J. Am. Chem. Soc. 2004, 126, 5036.
8.Hamaguchi, H.; Hayashi, S. Chem. Lett. 2004, 33, 12.
9.Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.
10.Wasserschied, P., Welton, T., Eds.; Ionic Liquids in Synthesis; 2nd Ed.; Wiley-VCH: Weinheim, 2008.
11.Pernak, J.; Czepukowicz, A.; Pozniak, R. Ind. Eng. Chem. Res. 2001, 40, 2379.
12.Holbrey, J. D.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1999, 13, 2133.
13.Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R. Seddon, K. R. J. Mater. Chem. 1998, 8, 2627.
14.Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
15.Migowski, P.; Dupont, J. Chem.-Eur. J. 2007, 13, 32.
16.Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
17.Brennecke, J. F.; Anderson, J. L.; Dixon, J. K. Acc. Chem. Res. 2007, 40, 1208.
18.Hiroyuki, O. Bull. Chem. Soc. Jpn. 2006, 79, 1665.
19.Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; Mccormac, P. B.; Seddon, K. R. Org. Lett. 1999, 1, 997.
20.Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.; Ohkubo, K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349.
21.Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J. J. Am. Chem. Soc. 2005, 127, 3298.
22.Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
23.Dyson, P. J.; Ellis, D. J.; Parke, D. G.; Welton, T. Chem. Commun. 1999, 25.
24.Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233.
25.Chiappe, C.; Imprato, G.; Napolitano, E.; Pieraccini, D. Green Chem. 2004, 6, 33.
26.Vitz, J.; Mac, D. H.; Legoupy, S. Green Chem. 2007, 9, 431.
27.Pan, X.; She, X.; Li, Y.; Zhang, J.; Wang, W.; Miao, Q. J. Org. Chem. 2005, 70, 3285.
28.Han, B.; Zhang, Z.; Xie, Y.; Li, W.; Hu, .; Song, J.; Jiang, T. Angew. Chem. Int. Ed. 2008, 47, 1127.
29.Yabu, H.; Tajima, A.; Higuchi, T.; Shimomura, M. Chem. Commun. 2008, 4588.
30.Kim, T. Y.; Kim, W. J.; Hong, S. H.; Kim, J. E.; Kwang, S. S. Angew. Chem. Int. Ed. 2009, 48, 3806 .
31.Bai, X.; Gao, Y.; Liu, H. G.; Zheng, L. J. Phys. Chem. C, 2009, 113, 17730.
32.Chuan, Z.; Douglas, R. M.; Alan, M. B. J. Am. Chem. Soc. 2009, 131, 16195.
33.Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
34.Lam, D. M. K.; Rossiter, B.W. Sci. Am. 1991, 265, 80.
35.Lewis, L. N. Chem. Rev. 1993, 93, 2693.
36.Nicewarner-pena, S. R.; Freeman, R. G.; Reiss, B. D.; He, L.; Pena, D. J.; Walton I. D.; Cromer, R.; Keating C. D.; Natan, M. J. Science 2001, 294, 137.
37.Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Adv. Mater. 2001, 13, 1501.
38.Kamat, P.V. J. Phys. Chem. B, 2002, 106, 7729.
39.Pileni, M. P.; Adv. Funct. Mater. 2001, 11, 323.
40.Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin C. A. Science 1997, 277, 1078.
41.Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale C. A.; Eisler, H.; Bawendi, M.G. Science 2000, 290, 314.
42.Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289.
43.Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang P. Nano Lett. 2003, 3 (9), 1229.
44.馬振基編著,“奈米材料科技原理與應用”,全華科技出版社,2003
45.蘇品書編譯, “超微粒子材料技術”, 復漢出版,1989
46.Cheng, B.; Samulski, E. T. Chem. Commun. 2004, 986.
47.盧希鵬、馬振基編著,“奈米材料技術地圖”,國科會科學技術資料中心,2003
48.尹邦躍、張勁燕編著,“奈米時代”,五南圖書股份有限公司,2002
49.莊萬發編撰,“超微粒子理論應用”,復漢出版,1995
50.Li, Z.; Huang, X.; Liu, J.; Ai, H. Mater. Lett. 2008, 62, 2507.
51.Fang, J.; Hahn, H.; Krupke, R.; Schramm, F.; Scherer, T.; Ding, B.;
Song, X. Chem. Commun. 2009, 9, 1130.
52.Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
53.Huo, Z.; Tsung, C.; Huang, W.; Zhang, X.; Yang, P. Nano Lett. 2008, 8 (7), 2041.
54.Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 7, 617.
55.Sun, Y.; Xia, Y.; Adv. Mater. 2002, 14, 833.
56.Sun, Y.; Mayers, B.; Xia, Y. Nano Lett. 2003, 3 (5), 675.
57.Sun, Y.; Xia, Y. Science 2002, 298, 2176.
58.Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Chem. Mater. 2002, 14 (11), 4736.
59.Sun, Y.; Mayers B.; Herricks, T.; Xia, Y. Nano Lett. 2003, 3 (7), 955.
60.Jiang, P.; Li, S. Y. ; Xie, S. S.; Gao, Y.; Song, L. Chem. Eur. J. 2004, 10, 4817.
61.Zhang, W. C.; Wu, X. L.; Chen, H. T.; Gao, Y. J.; Zhu, J.; Hang, G. S.; Chu, P. K. Acta Mater. 2008, 56, 2508.
62.Jiu, J.; Murai, K.; Kim, D.; Kim, K.; Suganuma, K. Mater. Chem. Phys. 2009, 114, 333.
63.Ren, L. Z.; Wang, J. X. Mater. Sci. China 2010, 4 (4), 398.
64.Christopher, P. N.; Guy, J. C.; Jonathan, P. R. J. Organomet. Chem. 2007, 692, 4962.
65.Jeanmaire, D.L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1.
66.Lee, K. M.; Wang, M. J.; Lin , J. B. J. Chem. Soc. Dalton Trans. 2002, 2852.
67.Kim, S. H.; Choi, B. S.; Kang, K.; Choi, Y. S.; Yang, S. I. J. Alloys Compd. 2007, 433, 261.
68.Suzank, M.; Alfonsb, A. J. Chem. Soc., Faraday Trans. 1984, 80, 1305.
69.Alison, B; Trevor, J. D. J. Chem. Soc., Faraday Trans. 1995, 91(3), 499.
70.Bachackashvilli, A; Katz, B; Priel, Z.; Efrima, S. J. Phys. Chem. 1984, 88, 6185.
71.Xiao, G. N.; Man, S. Q. Chem. Phys. Lett. 2007, 447, 305.