跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周育輝
Yu-Hui Zhou
論文名稱: 非受壓含水層之三維斜井捕集區解析解
Analytical Solutions for Three-Dimensional Capture Zone of Slanted Wells in an Unconfined Aquifer
指導教授: 陳家洵
Chia-Shyun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 斜井、捕集區、解析解
外文關鍵詞: slanted well, capture zone, analytical solution
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前的地下水整治方法多以垂直井進行,但因鑽設垂直井會破壞建築物,所以要解決建築物下的地下水污染問題,可在建築物周邊鑽設斜井,深入建築物下的污染含水層來進行相關的整治工作。含水層本身若存在一使地下水流動的區域性水流,當抽水試驗進行時,區域性水流會在抽水井周圍形成捕集區,捕集區內的地下水會被抽水井抽出。目前尚未有研究非受壓含水層中的斜井,在不同的井管設置和水文地質條件下,其捕集區變化的問題。本研究的目的是(1)分析斜井捕集區受斜井傾角、方位角、井篩段長度、定抽水率、含水層水力傳導係數垂直異向比和區域性水流梯度的影響。(2)利用線性疊加法,決定斜井的多井捕集區,並與垂直井的多井捕集區進行比較。假設斜井為一線源,本研究推導出捕集區的穩態解析解,得到以下五結論:(1)斜井傾角或是含水層垂直異向比越小,斜井捕集區的形狀在水平方向會向外延伸,垂直方向則會被壓縮。(2)斜井的方位角與區域性水流方向相同時,產生最大的捕集區範圍;方位角與區域性水流方向正交時,捕集區範圍最小。(3)斜井的方位角與區域性水流方向相反時,捕集區停滯點隨著區域性水流梯度增強,會越往上並朝井篩段的方向移動。(4)斜井捕集區的範圍與開篩段長度和定抽水率的大小成正比,與區域性水流梯度的大小則成反比。(5)利用斜井的多井捕集區解析解,決定在不同的斜井數量和井管設置下所產生的多井捕集區。相較於垂直井的多井捕集區,斜井可用少量的井數,以及較長的井篩段,深入建築物下的含水層,進行大範圍的整治工作,所以在解決建築物下之地下水污染問題的能力上,斜井比垂直井高。


    It is rather impractical to install vertical wells inside a building for the sake of dealing with groundwater contamination under the building. Slanted wells, however, provide an alternative because they can be drilled with an inclination angle (with respect to the horizontal surface) from the edge of the building foundation to the target aquifer. The purposes of this study are (1) to investigate the influence of different hydrogeological conditions and well locations on the capture zone of the slanted well and (2) to determine the capture zone of the multiple slanted wells by using the linear superposition principle. A steady-state, analytical solution is developed for the three- dimensional (3D) capture zone created by a slanted well pumping under the influence of a uniform regional flow field of a constant hydraulic gradient. The aquifer is assumed to be unconfined, homogeneous with a vertical anisotropy ratio. Decreasing inclination angle of the slanted well or vertical anisotropy ratio compresses the 3D capture zone in the vertical direction while elongates its horizontal extent. The 3D capture zone is the largest when the slanted well is in the same direction of the regional flow, and the smallest when the slanted well is in the direction at a right angle to the regional flow. The stagnation point moves upward and closer to the slanted well screen when regional hydraulic gradient increases. The area of the capture zone is directly proportional to the well screen and the constant pumping rate, inversely proportional to the regional hydraulic gradient. A solution for multiple slanted wells is obtained which can be used to deal with practical conditions using more than one well to withdraw the contaminated groundwater below buildings that cannot be done using the conventional vertical wells.

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 符號說明 xi 第一章 背景與研究目的 1 1.1背景 1 1.2前人研究 5 1.3研究目的與方法 11 第二章 三維斜井捕集區模式之發展與驗證 16 2.1模式假設 16 2.2數學模式 16 2.2.1單井的斜井捕集區解析解及驗證 16 2.2.2多井的斜井捕集區解析解及驗證 29 第三章 參數敏感度分析 34 3.1 斜井傾角("α" )、開篩段長度("l" _"s" )敏感度分析 34 3.2 斜井方位角("β" )敏感度分析 37 3.3 含水層垂直異性比(κ)敏感度分析 41 3.4 區域性水流梯度(i)敏感度分析 43 3.5 定抽水率(Q)敏感度分析 43 第四章 多井捕集區之假設案例分析 46 參考文獻 51 附錄A 非受壓含水層之斜井捕集區解析解推導 55 附錄B 受壓含水層之斜井捕集區解析解推導 57

    [1] Molvar, E. M., “Drilling smarter: using directional drilling to reduce oil and gas impacts in the intermountain west”, Prepared by Biodiversity Conservation Alliance, Report issued Feb, 18, 34, 2003.
    [2] Zhan, H., and V. A. Zlotnik, “Groundwater flow to a horizontal or slanted well in an unconfined aquifer”, Water Resources Research, 38(7), 2002.
    [3] Boulton, N. S., “The drawdown of the water-table under non-steady conditions near a pumped well in an unconfined formation”, Proceedings of the Institution of Civil Engineers, 3(4), 564-579, 1954.
    [4] Neuman, S. P., “Theory of flow in unconfined aquifers considering delayed response of the water table”, Water Resources Research, 8(4), 1031-1044, 1972.
    [5] Steward, D. R., and W. Jin, “Drawdown and capture zone topology for nonvertical wells”, Water Resources Research, 39(8), 2003.
    [6] Tsou, P. R., Z. Y. Feng, H. D. Yeh, and C. S. Huang, “Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream”, Hydrology and Earth System Sciences, 14(8), 1477-1485, 2010.
    [7] Williams, D. E., “Drawdown distribution in the vicinity of nonvertical wells”, Ground Water, 51(5), 745-751, 2013.
    [8] Dupuit, J., Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables., Paris, 1863.
    [9] Chen, S., “Unsteady-State Flow Created by a Slanted Well In Coal Mine”, China University of Mining and Technology Press, 2014.
    [10] Feng, G. Q., and Q. G. Liu, “Pressure transient behavior of a slanted well
    with an impermeable fault”, Journal of Hydrodynamics, 26(6), 980-985, 2015.
    [11] Batu, V., “A generalized analytical solution for an inclined well in a vertically and horizontally anisotropic confined aquifer and comparisons with MODFLOW”, Journal of Hydrology, 520, 168-179, 2015.
    [12] Blumenthal, B. J., and H. Zhan, “Rapid computation of directional wellbore drawdown in a confined aquifer via Poisson resummation”, Advances in Water Resources, 94, 238-250, 2016.
    [13] Javandel, I., and C. F. Tsang, “Capture‐Zone Type Curves: A Tool for Aquifer Cleanup”, Ground Water, 24(5), 616-625, 1986.
    [14] Grubb, S., “Analytical Model for Estimation of Steady‐State Capture Zones of Pumping Wells in Confined and Unconfined Aquifers”, Ground Water, 31(1), 27-32, 1993.
    [15] Shan, C., “An analytical solution for the capture zone of two arbitrarily located wells”, Journal of Hydrology, 222(1), 123-128, 1999.
    [16] Christ, J. A., and M. N. Goltz, “Hydraulic containment: analytical and semi-analytical models for capture zone curve delineation”, Journal of Hydrology, 262(1), 224-244, 2002.
    [17] Asadi-Aghbolaghi, M., G. R. Rakhshandehroo, and M. Kompani-Zare, “Analytical solutions for the capture zone of a pumping well near a stream”, Hydrogeology Journal, 19(6), 1161-1168, 2011.
    [18] Samani, N., and S. Zarei-Doudeji, “Capture zone of a multi-well system in confined and unconfined wedge-shaped aquifers”, Advances in Water Resources, 39, 71-84, 2012.
    [19] Samani, N., and S. Zarei-Doudeji, “A General Analytical Capture Zone model: A Tool for Groundwater Remediation”, IFAC-PapersOnLine, 48(1), 234-239, 2015.
    [20] Zarei-Doudeji, S., and N. Samani, “Capture zone of a multi-well system in bounded peninsula-shaped aquifers”, Journal of contaminant hydrology, 164, 114-124, 2014.
    [21] Christ, J. A., and M. N. Goltz, “Containment of groundwater contamination plumes: minimizing drawdown by aligning capture wells parallel to regional flow”, Journal of Hydrology, 286(1), 52-68, 2004.
    [22] Fienen, M. N., J. Luo, and P. K. Kitanidis, “Semi-analytical homogeneous anisotropic capture zone delineation”, Journal of Hydrology, 312(1), 39-50, 2005.
    [23] Intaraprasong, T., and H. Zhan, “Capture zone between two streams”, Journal of hydrology, 338(3), 297-307, 2007.
    [24] Faybishenko, B. A., I. Javandel, and P. A. Witherspoon, “Hydrodynamics of the capture zone of a partially penetrating well in a confined aquifer”, Water Resources Research, 31(4), 859-866., 1995.
    [25] Schafer, D. C., “Determining 3D capture zones in homogeneous, anisotropic aquifers”, Ground Water, 34(4), 628-639, 1996.
    [26] Bair, E. S., and T. D. Lahm, “Variations in Capture‐Zone Geometry of a Partially Penetrating Pumping Well in an Unconfined Aquifer”, Ground Water, 34(5), 842-852, 1996.
    [27] Ataie-Ashtiani, B., B. Shafei, H. Rashidian-Dezfouli, and M. Mohamadzadeh, “Capture zone of a partially penetrating well with skin effects in confined aquifers”, Transport in porous media, 91(2), 437-457, 2012.
    [28] Muskat, M., The Flow of Homogeneous Fluids Through Porous Media., McGraw-Hill Book Company., 1937.
    [29] Bischoff, H., “An integral equation method to solve three dimensional confined flow to drainage systems”, Applied Mathematical Modelling, 5(6), 399-404, 1981.
    [30] Haitjema, H. M., “Modeling Three-Dimensional Flow in Confined Aquifers by Superposition of Both Two- and Three-Dimensional Analytic Functions”, Water Resources Research, 21(10), 155771566, 1985.
    [31] Steward, D. R., “A vector potential for a partly penetrating well and flux in an approximate method of images”, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 457(2013), 2093-2111, 2001.
    [32] Steward, D. R., “A vector potential and exact flux through surfaces using Lagrange and Stokes stream functions”, In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 458(2018), 489-509, 2002.
    [33] Abramowitz, M., and I. A. Stegun, Handbook of mathematical functions.Applied mathematics series., Dover Publications., 1996.
    [34] Zlotnik, V. A., “Effects of anisotropy on the capture zone of a partially penetrating well”, Ground Water, 35(5), 842-847, 1997.
    [35] Istok, J. D., and K. J. Dawson, Aquifer testing: design and analysis of pumping and slug tests., CRC Press., 1991.
    [36] Debnath, L., and D. Bhatta, Integral transforms and their applications., CRC Press., 2014.
    [37] Gradshteyn, I. S., and I. M. Ryzhik, Table of integrals, series, and products., Academic press., 2007.

    QR CODE
    :::