跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王牧崗
Mu-Gang Wang
論文名稱: 二階段法製備均一粒徑之次微米球
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 均一粒徑次微米球無乳化劑乳化聚合二階段法
外文關鍵詞: Monodisperse submicrosphere, Soap-free emulsion polymerization, Two-step method
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以二階段法合成均一粒徑之次微米球,來改善傳統溶脹法於溶脹程序添加助溶脹劑、共溶劑及手續繁雜使其反應時間較長的問題。首先以低分子量PSt 為種子,探討縮短傳統溶脹程序之可行性。之後以高分子量之PSt 或PMMA為種子,探討製備出較大粒徑之均一粒徑次微米球的可行性。最後,於PSt 或 PMMA 核心反應轉化率80%~90%時添加第二階段單體的方式,探討製備出較大粒徑之均一粒徑次微米球的可行性。
    結果顯示,當鏈轉移劑添加於核心轉化率55%及95%添加時,可成功製備
    出粒徑為469nm 及473nm 低分子量之均一粒徑粒子。而在溶脹程序時,當添加 SDS 作為穩定劑時,由於短分子鏈段的關係造成許多小粒子,而改以PVA 為穩定劑則可以改善其狀況,並於添加量為0.7%~2%時,得到粒徑大約為825nm 之均一粒徑次微米球。
    另一部分,以高分子量之PSt 或PMMA 為種子,並將溶脹溫度上升接近核
    心之Tg,藉此在不需鏈轉移劑及穩定劑的情況下,成功製備出PSt 粒徑範圍為 240nm~375nm 及PMMA 粒徑範圍為316nm~462nm 之均一粒徑次微米球。
    為了更進一步縮短反應時間,於PSt 或PMMA 轉化率為80%~90%時,添加
    二階段單體,探討核心克數及殼層單體添加量對粒子之影響,結果隨著核心(10g~25g)及殼層單體添加量(1 倍~9 倍)上升,粒徑有明顯上升的趨勢,成功製備出PSt 粒徑範圍為208nm~420nm、PMMA 粒徑範圍為275nm~560nm 及 PMMA/PSt 粒徑範圍為402nm~582nm 之均一粒徑次微米球。改變殼層結構方面,在殼層添加20% EGDMA 交聯劑的情況下,當殼層添加倍率為6 倍以上時,即具有耐溶劑之性質。而隨著二階段單體親水性越強,則因二次成核的關係,粒子均一度越差,然而可以三階段添加親水性單體的方式,成功製備出具不同表面官能基之均一粒徑次微米球。


    The size of monodisperse submicrospheres has been increased by using two-step method. Low or regular molecular weight of monodisperse seeds were prepared at the first step. Monomers were added in the seed latex and polymerized at the second step. On the other hands, in order to further shorten the reaction time, monomers were added when the seed conversion was 80% to 90%. The effect of monomer content and monomer species at two steps were also discussed.

    The results indicated that low molecular weight and monodisperse PSt seed with diameter 469nm and 473nm were prepared by adding chain transfer agent at seed conversion 55% and 95%, respectively. The monodisperse PSt submicrospheres with 825 nm diameter were obtained when 0.7% to 2% of PVA were added at the second step.

    The size of regular molecular weight of PSt and PMMA monodisperse seeds were 240nm and 316 nm, respectively. Using above seeds and monomers at the second step, the size of PSt and PMMA monodisperse submicrospheres became
    375nm and 462nm, respectively. In addition, the reaction temperature was closed to Tg of seeds and chain transfer agent and stabilizer were not added.

    To further reduce the total reaction time, monomers were added when the conversion of PSt or PMMA seed was 80% to 90%. The particle diameters of monodisperse submicrospheres were increased with increasing monomer amount at the first step (10g~25g) and with increasing monomers added at the second step (1~9) times, based on the first step monomer). The sizes of PSt, PMMA, and PMMA/PSt monodisperse submicrospheres were 420 nm, 560 nm and 582 nm, respectively. And the sizes of above seeds were 208 nm, 275 nm, and 402 nm respectively. In addition,
    the monodisperse PSt submicrosphere with solvent resistant was obtained when more than 6 times of monomers and 20 wt.% of crosslinkers, EGDMA, were added at the second step. The PSt monodisperse submicrospheres with different hydrophilic functional group were also obtained by adding hydrophilic monomer at the third step.

    目錄 中文摘要 ........................................... I 英文摘要 ........................................... III 目錄 ............................................... IV 圖目錄 ............................................. VI 表目錄 ............................................. IX 第一章 緒論 ......................................... 1 1-1 均一粒徑高分子球之簡介與文獻回顧 .................................................... 1 1-2 研究動機與目的 .................................................... 4 第二章 實驗 .................................................... 5 2-1 實驗藥品 .................................................... 5 2-2 實驗儀器 .................................................... 9 2-3 實驗方法 .................................................... 10 2-3-1 低分子量PSt 核心之製備 .................................................... 10 2-3-2 低分子量聚苯乙烯溶脹程序之製備.................................................. 12 2-3-3 高分子核心之製備 .................................................... 14 2-3-4 二階段法製備均一粒徑次微米球................................................... 16 2-3-5 二階段法快速製備均一粒徑次微米球 .................................................... 18 2-4 儀器分析 .................................................... 20 2-4-1 掃描式電子顯微鏡(SEM)測試條件 .................................................... 20 2-4-2 動態粒徑分析儀(DLS)測試條件 .................................................... 20 第三章 結果與討論 .................................................... 21 3-1 低分子量聚苯乙烯製備次微米球之探討 .................................................... 22 3-1-1 低分子量核心之製備 .................................................... 22 3-1-2 以十二烷基硫酸鈉為穩定劑之探討.................................................. 23 3-1-3 以聚乙烯醇為穩定劑之探討 .................................................... 24 3-1-4 核心純化對粒子均一性之探討.................................................. 24 3-2 二階段法製備均一粒徑次微米球 .................................................... 38 3-2-1 以聚苯乙烯為核心之製備 .................................................... 38 3-2-2 以聚甲基丙烯酸甲酯為核心之製備.................................................. 39 3-3 以聚苯乙烯為核心快速製備均一粒徑次微米球 .................................................... 46 3-3-1 核心單體添加量之探討 .................................................... 46 3-3-2 殼層為聚苯乙烯次微米球之製備................................................... 46 3-3-3 殼層為交聯型聚苯乙烯次微米球之製備 .................................................... 48 3-3-4 具不同表面官能基次微米球之製備................................................... 49 3-4 以聚甲基丙烯酸甲酯為核心快速製備均一粒徑次微米球 .... 73 3-4-1 核心單體添加量之探討 ..................................................... 73 3-4-2 殼層為聚甲基丙烯酸甲酯次微米球之製備 ..................................................... 73 3-4-3 殼層為聚苯乙烯次微米球之製備................................................... 74 第四章 結論 ..................................................... 84 參考文獻 ..................................................... 86

    參考文獻
    [1] H. Minami, Z. Wang, T. Yamashita, M. Okubo. "Thermodynamic analysis of the
    morphology of monomer-adsorbed, cross-linked polymer particles prepared by the
    dynamic swelling method and seeded polymerization." Colloid and Polymer Science
    281.2003.(3): 246-252.
    [2] A. Mansour, R. Ahmed, A. Bassyouni, G. Nasr. "Optical spectroscopic studies of
    perylene dye doped in copolymer of ST/MMA as solar collector." International
    Journal of Polymeric Materials 56.2007.(6): 651-662.
    [3] T. Ellingsen, O. Aune, J. Ugelstad, S. Hagen. "Monosized stationary phases for
    chromatography." Journal of Chromatography A 535.1990. 147-161.
    [4] S. Camli, S. Senel, A. Tuncel. "Cibacron blue F3G-A-attached uniform and
    macroporous poly (styrene-co-divinylbenzene) particles for specific albumin
    adsorption." Journal of Biomaterials Science, Polymer Edition 10.1999.(8): 875-889.
    [5] D. Horak, M. Karpíšek, J. Turkova, M. Beneš. "Hydrazide‐Functionalized Poly (2‐
    hydroxyethyl methacrylate) Microspheres for Immobilization of Horseradish
    Peroxidase." Biotechnology progress 15.1999.(2): 208-215.
    [6] E. Unsal, S. Camli, S. Senel, A. Tuncel. "Chromatographic performance of
    monodisperse–macroporous particles produced by “modified seeded polymerization.”
    I: Effect of monomer/seed latex ratio." Journal of applied polymer science
    92.2004.(1): 607-618.
    [7] F. Gritti, I. Leonardis, J. Abia, G. Guiochon. "Physical properties and structure of
    fine core–shell particles used as packing materials for chromatography: relationships
    between particle characteristics and column performance." Journal of
    Chromatography A 1217.2010.(24): 3819-3843.
    [8] M.-J. Yim, K.-W. Paik, Design and understanding of anisotropic conductive films
    (ACFs) for LCD packaging, Polymeric Electronics Packaging, 1997. Proceedings.,
    The First IEEE International Symposium on, IEEE, 1997, pp. 233-242.
    [9] Y.-S. Eom, J.-W. Baek, J.-T. Moon, J.-D. Nam, J.-M. Kim. "Characterization of
    polymer matrix and low melting point solder for anisotropic conductive film."
    Microelectronic Engineering 85.2008.(2): 327-331.
    [10] B. Platzer, R.-D. Klodt, B. Hamann, K.-D. Henkel. "The influence of local flow
    conditions on the particle size distribution in an agitated vessel in the case of
    suspension polymerisation of styrene." Chemical Engineering and Processing:
    Process Intensification 44.2005.(11): 1228-1236.
    [11] H. Jung, K. Song, K. Lee, B.H. Lee, S. Choe. "Reaction and stabilizing
    mechanism of the cross-type macromonomers in the dispersion polymerization of
    87
    styrene." Journal of colloid and interface science 308.2007.(1): 130-141.
    [12] J.-W. Kim, K.-D. Suh. "Monodisperse micron-sized polystyrene particles by
    seeded polymerization: effect of seed crosslinking on monomer swelling and particle
    morphology." Polymer 41.2000.(16): 6181-6188.
    [13] K. Zhang, W. Wu, H. Meng, K. Guo, J.-F. Chen. "Pickering emulsion
    polymerization: preparation of polystyrene/nano-SiO 2 composite microspheres with
    core-shell structure." Powder Technology 190.2009.(3): 393-400.
    [14] T. Yamamoto, Y. Kanda, K. Higashitani. "Molecular-scale observation of
    formation of nuclei in soap-free polymerization of styrene." Langmuir 20.2004.(11):
    4400-4405.
    [15] T. Yamamoto, M. Nakayama, Y. Kanda, K. Higashitani. "Growth mechanism of
    soap-free polymerization of styrene investigated by AFM." Journal of colloid and
    interface science 297.2006.(1): 112-121.
    [16] A. Rogozea, F. Savonea, A. Caragheorgheopol, I.-C. Bujanca, M. Dimonie.
    "SOAP FREE EMULSION POLYMERIZATION. A SPIN PROBE STUDY OF THE
    COLLOID SYSTEM IN THE EARLY STAGES OF REACTION." REVUE
    ROUMAINE DE CHIMIE 56.2011.(4): 351-+.
    [17] T. Matsumoto, A. Ochi. "Polymerization of styrene in aqueous solution."
    Kobunshi Kagaku 22.1965.(244): 481-487.
    [18] Y. Yamada, T. Sakamoto, S. Gu, M. Konno. "Soap-free synthesis for producing
    highly monodisperse, micrometer-sized polystyrene particles up to 6 μm." Journal of
    colloid and interface science 281.2005.(1): 249-252.
    [19] D. Nagao, T. Sakamoto, H. Konno, S. Gu, M. Konno. "Preparation of
    micrometer-sized polymer particles with control of initiator dissociation during
    soap-free emulsion polymerization." Langmuir 22.2006.(26): 10958-10962.
    [20] Z.-Z. Gu, H. Chen, S. Zhang, L. Sun, Z. Xie, Y. Ge. "Rapid synthesis of
    monodisperse polymer spheres for self-assembled photonic crystals." Colloids and
    Surfaces A: Physicochemical and Engineering Aspects 302.2007.(1): 312-319.
    [21] X. Du, J. He. "Facile size‐controllable syntheses of highly monodisperse
    polystyrene nano‐and microspheres by polyvinylpyrrolidone‐mediated emulsifier‐free
    emulsion polymerization." Journal of applied polymer science 108.2008.(3):
    1755-1760.
    [22] S.T. Camli, F. Buyukserin, M.S. Yavuz, G.G. Budak. "Fine-tuning of functional
    poly (methylmethacrylate) nanoparticle size at the sub-100nm scale using
    surfactant-free emulsion polymerization." Colloids and Surfaces A: Physicochemical
    and Engineering Aspects 366.2010.(1): 141-146.
    [23] E. Rusen, A. Mocanu, B. Marculescu, R. Somoghi, L. Butac, F. Miculescu, C.
    Cotrut, I. Antoniac, C. Cincu. "Obtaining complex structures starting from
    88
    monodisperse poly (styrene-co-2-hydroxyethylmethacrylate) spheres." Colloids and
    Surfaces A: Physicochemical and Engineering Aspects 375.2011.(1): 35-41.
    [24] A.M. Telford, B.T. Pham, C. Neto, B.S. Hawkett. "Micron‐sized polystyrene
    particles by surfactant‐free emulsion polymerization in air: Synthesis and
    mechanism." Journal of Polymer Science Part A: Polymer Chemistry 51.2013.(19):
    3997-4002.
    [25] K. Shibuya, D. Nagao, H. Ishii, M. Konno. "Advanced soap-free emulsion
    polymerization for highly pure, micron-sized, monodisperse polymer particles."
    Polymer 55.2014.(2): 535-539.
    [26] Q. Zhang, Y. Han, W. Wang, T. Song, J. Chang. "A theoretical and experimental
    investigation of the size distribution of polystyrene microspheres by seeded
    polymerization." Journal of colloid and interface science 342.2010.(1): 62-67.
    [27] M. Okubo, T. Nakagawa. "Preparation of micron-size monodisperse polymer
    particles having highly crosslinked structures and vinyl groups by seeded
    polymerization of divinylbenzene using the dynamic swelling method." Colloid and
    Polymer Science 270.1992.(9): 853-858.
    [28] Q. Zhang, Y. Han, W.-C. Wang, L. Zhang, J. Chang. "Preparation of fluorescent
    polystyrene microspheres by gradual solvent evaporation method." European Polymer
    Journal 45.2009.(2): 550-556.
    [29] J.W. Kim, K.D. Suh. "Monodisperse, full‐IPN Structured Polymer Particles in
    Micron‐Sized Range by Seeded Polymerization." Macromolecular Chemistry and
    Physics 202.2001.(5): 621-627.
    [30] W. Yang, W. Ming, J. Hu, X. Lu, S. Fu. "Morphological investigations of
    crosslinked polystyrene microspheres by seeded polymerization." Colloid and
    Polymer Science 276.1998.(8): 655-661.
    [31] D. Kim, K. Lee, S. Choe. "Effect of crosslinking agents on the morphology of
    polymer particles produced by one-step seeded polymerization." Macromolecular
    Research 17.2009.(4): 250-258.
    [32] E. Partouche, D. Waysbort, S. Margel. "Surface modification of crosslinked poly
    (styrene-divinyl benzene) micrometer-sized particles of narrow size distribution by
    ozonolysis." Journal of colloid and interface science 294.2006.(1): 69-78.
    [33] J.-S. Song, M.A. Winnik. "Cross-linked, monodisperse, micron-sized polystyrene
    particles by two-stage dispersion polymerization." Macromolecules 38.2005.(20):
    8300-8307.
    [34] 歐進祿,「均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微
    米級之緻密或交聯結構粒子」,國立中央大學化學工程與材料工程學系博士論文
    (2001)

    QR CODE
    :::