| 研究生: |
黃梓銘 Zih-Ming Huang |
|---|---|
| 論文名稱: |
結合石墨烯與近場電紡織技術製作多方向性或透明之壓電纖維發電元件 Utilized NFES piezoelectric fibers to fabricate all-directional or transparent graphene-based generators |
| 指導教授: |
傅尹坤
Yiin-Kuen Fuh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 近場電紡織技術 、壓電纖維 、奈米發電機 、石墨烯 、自供電系統 |
| 外文關鍵詞: | Near-field electrospinning (NFES), Piezoelectric fiber, Nanogenerator(NG), Graphene, Self-power system |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用近場電紡織技術(near-field electrospinning,NFES),研究壓電奈米纖維並且製作成奈米發電機(nanogenerator,NG),主要重點為 (1) 利用近場電紡織技術大面積排列壓電奈米纖維製造奈米發電機,(2) 同心圓排列壓電纖維製造多方向性奈米發電機 , (3) 結合透明石墨烯電極製造透明可撓奈米發電機奈米發電機。以直寫(Direct-write)方式將壓電高分子材料聚偏氟乙烯(polyvinylidene fluoride,PVDF)利用NFES技術與XY精密位移平台將奈微米纖維(nano/microfibers,NMFs)大面積排列在可撓性基底上製作成奈米發電機,並且進行一系列訊號量測與驗證。為了使NG更有效率的蒐集機械能,我們改良壓電纖維的排列方式,從平行直線排列變成同心圓排列,成功讓NG可更直接蒐集來自不同的機械力,且可達到 ~4V的電壓 500nA電流輸出。另外,我們結合石墨烯來做為基板,製造出透明且可撓的NG,相較於之前不透明的銅箔基板有更多的發展空間,未來可望應用在手機螢幕或穿戴式裝置上作為自供電系統。
In this thesis, the near-field electrospinning (NFES) technique was used to investigate the piezoelectric fibers and fabricated the nanogenerators. The major research focused on (1) Massively aligned nanofibers-based nanogenerator deposited via near-field electrospinning, (2) An arbitrarily directional piezoelectric fiber-based nanogenerator with concentric circle topography via near-field electrospinning, (3) A transparent and flexible graphene-piezoelectric fiber generator. We demonstrate a direct-write, in-situ poled polyvinylidene fluoride (PVDF) nanofiber arrays that could functions as a self-powered active deformation sensor or harvester. This research is different from previous electrospinning research, however the fibers were mostly patterned in parallel lines and they could be actuated in limited direction only. We fabricated this apparatus precisely via near field electrospinning which has a spectacular concentric circle topography which made it possible to collect the mechanical energy from various directions. Furthermore, we also utilized the graphene as electrode to fabricate a flexible and transparent NG. Compared to previous opaque Cu-foil electrode, the graphene based NG has a promising future in the applications of smart phone or wearable electronics as a self-power system.
[1] W.W. Wu, S. Bai, M. M. Yuan, Y. Qin, Z. L. Wang, T. Jing, ACS Nano, 2012, 6, 6231.
[2] B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, C. M. Lieber, Nature, 2007, 449, 885.
[3] R. S. Yang, Y. Qin, L. M. Dai, Z. L. Wang, Nat. Nanotechnol., 2008, 4, 34.
[4] Z. L. Wang, J. Song, Science, 2006, 312, 242.
[5] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Lett., 2010,10, 3151.
[6] Y. Wang, R. Furlan, I. Ramos, J. J. Santiago-Aviles, Appl. Phys. A, 2004, 78, 1043.
[7] C. E. Chang, V. H. Tran, J. B. Wang,; Y. K. Fuh, L. W. Lin, Nano Lett. 2010, 10, 726.
[8] Z. H. Lin, Y. Yang, J. M. Wu, Y. Liu, F. Zhang, Z. L. Wang, J. Phys. Chem. Lett., 2012, 3, 3599.
[9] Y. K. Fuh, J. C. Ye, P. C. Chen, Z. M. Huang, J. Mater. Chem. A, 2014, 2, 16101.
[10] J. Chang, M. Dommer, C. Chang, L. W. Lin, Nano Energy, 2012, 1, 356.
[11] D. Sun, C. Chang, S. Li, L.W. Lin, Nano Lett., 2006, 6, 839.
[12] C. Chang, K. Limkrailassiri, L.W. Lin, Appl. Phys. Lett., 2008, 93, 123111.
[13] J. Pu, X. Yan, Y. Jiang, C. Chang, L. Lin, Sens. Actuator. A. Phys., 2010, 164, 131.
[14] M.C. Celina, T.R. Dargaville, P.M. Chaplya, R.L. Clough, Mater. Res. Soc. Symp. Proc., 2005, 851, 449.
[15] T. Lei, X. Cai, X. Wang, L. Yu, X. Hu, G. Zheng, W. Lv, L. Wang, D. Wu, D. Sun, L. Lin, RSC Adv., 2013, 3, 24952.
[16] D. Mandal, S. Yoon, K. J. Kim, Macromol. Rapid Commun., 2011, 32, 831.
[17] C. L. Sun , J. Shi , D. J. Bayerl , X. D. Wang , Energy Environ. Sci., 2011, 4, 4508.
[18] X. Y. Xue , S. H. Wang , W. X. Guo , Y. Zhang , Z. L. Wang , Nano Lett., 2012, 12, 5048 .
[19] M. A. Rahman, B. C. Lee, D. T. Phan, G. S. Chung, Smart Mater. Struct., 2013, 22, 085017.
[20] Z. L. Wang, J. Song, Science 2006, 312, 242.
[21] Z. L. Wang, Adv. Mater. 2009, 21, 1311.
[22] Q. Liang, X. Yan, Y. Gu, K. Zhang, M. Liang, S. Lu, X. Zheng, Y. Zhang, Sci. Rep. 2015, 5, 9080
[23] J. H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C. Y. Kang, S. J. Yoon, J. B. Yoo, S. W. Kim, Adv. Mater. 2014, 26, 765.
[24] Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, Z. L. Wang, Adv. Mater. 2015, 27, 2340.
[25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
[26] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706.
[27]B. Kumar, K. Y. Lee, H. K. Park, S. J. Chae, H. Lee, S. W. Kim, ACS Nano 2011, 5, 4197.
[28] S. H. Bae, O. Kahya, B. K. Sharma, J. Kwon, H. J. Cho, B. Ozyilmaz, J. H. Ahn, ACS Nano 2013, 7, 3130.
[29] D. Choi, M. Y. Choi, W. M. Choi, H. J. Shin, H. K. Park, J. S. Seo, J. Park,
S. M. Yoon, S. J. Chae, Y. H. Lee, S. W. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, Adv. Mater. 2010, 22, 2187.
[30] J. Kwon, W. Seung, B. K. Sharma, S. W. Kim, J. H. Ahn, Energy Environ. Sci. 2012, 5, 8970.
[31] S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, S. W. Kim, Adv. Mater. 2014, 26, 3918.
[32] Z. H. Liua, C. T. Pana, L. W. Lind, H. W. Lai, Sens. Actuator A-Phys. 2013, 193, 13.
[33] R. Yang, Y. Qin, C. Li, L. Dai, Z. L. Wang, Appl. Phys. Lett. 2009, 94, 022905.
[34] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nat. Nanotechnol. 2009, 4, 34.