跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅憲綸
Xian-Lun Luo
論文名稱: 以含硫碳鏈並噻吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體
3,5-bis(decylthio)dithieno[3,2-b:2',3'-d]thiophene (DSDTT)-Based Small Molecules for High-Performance Organic Field Effect Transistors (OFET) by Solution Shearing Method
指導教授: 劉振良
Cheng-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 109
中文關鍵詞: 有機場效應電晶體剪切力塗佈法溶液製程有機小分子
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機場效應電晶體(Organic field-effect transistor,OFET)是一種利用有機半導體組成通道的場效應電晶體。OFET 在近年來一直是熱門的研究主題之一,尤其是在軟性電子領域,基於具有低溫製程、低廉成本、延展性、大面積製作、製程簡單及分子可設計性等優點,使其不論在設計的彈性或應用的空間上,都比無機材料矽基板大,未來將成為軟性電子的主流。本論文利用可溶性有機小分子透過剪切力塗佈法製作高性能場效應電晶體。以接上側鏈增加溶解度之三並環噻吩(3,5-bis(decylthio)dithieno[3,2-b:2',3'-d]thiophene,DSDTT)為核心,並在核心兩側接上三種不同數目並環噻吩構成之次要結構:(1) 2,6-di(thiophen-2yl) DT (2)2,6-di(thieno[3,2-b]-
    thiophen-2yl) DTT (3)2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl) DDTT,來合成實驗中使用的 DSDTT 系列 p 型有機小分子半導體材料(DT-DSDTT、DTT-DSDTT、DDTT-DSDTT)。
    透過剪切力塗佈法之溶液製程,由 DSDTT 系列分子所製成之場效應
    電晶體隨著結構上總並環噻吩數目增加,其載子遷移率從 DT-DSDTT 的
    10 -5 cm 2 V -1 s -1 ,增加至 DDTT-DSDTT 的 2.6 cm 2 V -1 s -1 ;從紫外光-可見光吸收光譜、原子力顯微鏡表面形貌分析與低掠角 X 光繞射進行有機半導體薄膜之分析,可以觀察到透過增加次結構之並環噻吩數目,使材料有著更明顯的分子間作用力,也藉由側鏈上之硫與次結構上之硫(S-S)作用力,使整個分子結構呈現共平面,伴隨剪切力塗佈法降低排列時分子間不共平面所造成之負面影響,形成更有序之分子排列。此研究成功利用可溶液製程之簡單有機小分子製作出高載子遷移率場效應電晶體。


    Three new organic small molecule semiconductors with alkyl chain-substituted 3,5-bis(decylthio)dithieno[3,2-b:2',3'-d]thiophene (DSDTT) as the central core and both ends capped with thiophene (DT-DSDTT), thieno-thiophene (DTT-DSDTT) and dithienothiophene (DDTT-DSDTT) have been
    synthesized and characterized for organic field effect transistor (OFET) applications.
    Single crystal and molecular orbital computations indicate that the DSDTT core is completely planar, likely via S(Alkyl) ⋯ S(DTT) intra-molecular locks. Thin film and charge transport properties are analyzed by optical microscopy (OM), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and grazing incidence X-ray diffraction (GIXRD) experiments. The OFET through
    solution-sheared DDTT-DSDTT displays the highest hole mobility of up to 2.6 cm 2 V -1 s -1 and a ON/OFF current ratio (I ON /I OFF ) greater than 10 5 . These results can prove that molecules with S ⋯ S intramolecular locks have excellent mobility
    performance. Solution shearing method also offers a good manufacturing process. This research outcome can help organic molecular design and improve OFET performance in the future work.

    摘要------------------------------------------------------------------------------------------i Abstract-------------------------------------------------------------------------------------ii 致謝----------------------------------------------------------------------------------------iii 目錄----------------------------------------------------------------------------------------iv 圖目錄-------------------------------------------------------------------------------------vii 表目錄------------------------------------------------------------------------------------xiii 一. 緒論-----------------------------------------------------------------------------------1 1-1 前言-----------------------------------------------------------------------------------1 1-2 基本物理概念介紹----------------------------------------------------------------3 1-2-1 電子與電洞-----------------------------------------------------------------------3 1-2-2 費米能階與功函數--------------------------------------------------------------3 1-2-3 有機半導體材料電荷傳遞機制-----------------------------------------------4 1-3 有機場效應電晶體----------------------------------------------------------------5 1-3-1 簡介--------------------------------------------------------------------------------5 1-3-2 元件結構--------------------------------------------------------------------------6 1-3-3 基本工作原理及模式-----------------------------------------------------------8 1-3-4 特徵曲線、輸出曲線及電性參數--------------------------------------------9 1-4 有機半導體材料------------------------------------------------------------------12 1-4-1 有機小分子半導體材料------------------------------------------------------12 1-4-2 有機高分子半導體材料------------------------------------------------------17 1-4-3 有機分子之非共價結構閉鎖效應 (Noncovalent conformational locks) ----------------------------------------------------------------------------------------------22 1-5 有機半導體製程------------------------------------------------------------------24 1-5-1 高真空熱蒸鍍法製程(Vacuum Thermal Deposition) -------------------24 1-5-2 溶液製程(Solution Process) -------------------------------------------------26 1-5-2-1 液滴塗佈法(Drop Casting) ------------------------------------------------27 1-5-2-2 旋轉塗佈製程(Spin Coating) ---------------------------------------------31 1-5-2-3 印刷法製程(Printing) ------------------------------------------------------33 1-5-2-4 半月型塗佈法(Meniscus-guided Coating)-剪切力塗佈法 (Solution-shearing) ----------------------------------------------------------35 1-6 研究動機---------------------------------------------------------------------------37 二. 實驗---------------------------------------------------------------------------------39 2-1 實驗藥品---------------------------------------------------------------------------39 2-2 實驗設備與裝置------------------------------------------------------------------41 2-3 實驗方法---------------------------------------------------------------------------42 2-3-1 基板表面處理與表面修飾層------------------------------------------------42 2-3-2 元件製備------------------------------------------------------------------------43 2-4 實驗分析---------------------------------------------------------------------------44 2-4-1 電性量測------------------------------------------------------------------------44 2-4-2 紫外光至可見光波段光譜儀(UV-Vis Spectroscopy) -------------------44 2-4-3 偏光光學顯微鏡(Polarized Optical Microscopy) ------------------------44 2-4-4 原子力學顯微鏡(Atomic Force Microscopy) -----------------------------44 2-4-5 低掠角 X 光繞射(Grazing Incidence X-ray Diffraction,GIXRD) ---45 2-4-6 分子模擬計算------------------------------------------------------------------45 三. 結果與討論------------------------------------------------------------------------46 3-1 有機場效應電晶體元件電性分析---------------------------------------------46 3-2 有機小分子半導體材料性質鑑定---------------------------------------------50 3-3 溶液製程薄膜表面形貌分析---------------------------------------------------58 3-3-1 剪切力塗佈薄膜在光學顯微鏡下之表面形貌---------------------------58 3-3-2 剪切力塗佈薄膜在原子力學顯微鏡下之表面形貌---------------------61 3-4 有機小分子材料半導體薄膜微結構分析------------------------------------63 四. 結論和未來展望------------------------------------------------------------------70 參考文獻----------------------------------------------------------------------------------72 附錄----------------------------------------------------------------------------------------76

    [1] H. Cui, X. Yang, J. Peng, F. Qiu, Soft Matter 2017, 13, 5261.
    [2] E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 2012, 24, 2945.
    [3] H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
    [4] A. Facchetti, Mater. Today 2007, 10, 28.
    [5] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. Chen, S. Barman, B.
    V. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat Mater 2010, 9, 859.
    [6] Y. Liu, N. Qi, T. Song, M. Jia, Z. Xia, Z. Yuan, W. Yuan, K. Q. Zhang, B.
    Sun, ACS Appl Mater Interfaces 2014, 6, 20670.
    [7] C. A. Di, F. Zhang, D. Zhu, Adv. Mater. 2013, 25, 313.
    [8] S. R. Thomas, P. Pattanasattayavong, T. D. Anthopoulos, Chem. Soc. Rev.
    2013, 42, 6910.
    [9] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
    [10] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 2002,
    81, 268.
    [11] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, J.
    Appl. Phys. 2002, 92, 5259.
    [12] R. Mondal, R. M. Adhikari, B. K. Shah, D. C. Neckers, Org. Lett. 2007, 9,
    2505.
    [13] R. Mondal, B. K. Shah, D. C. Neckers, J. Am. Chem. Soc. 2006, 128,
    9612.
    [14] S. K. Park, T. N. Jackson, J. E. Anthony, D. A. Mourey, Appl. Phys. Lett.
    2007, 91, 063514.
    [15] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
    [16] M. He, F. Zhang, The Journal of Organic Chemistry 2007, 72, 442.
    [17] J. Youn, P.-Y. Huang, Y.-W. Huang, M.-C. Chen, Y.-J. Lin, H. Huang, R.
    P. Ortiz, C. Stern, M.-C. Chung, C.-Y. Feng, L.-H. Chen, A. Facchetti, T.
    J. Marks, Adv. Funct. Mater. 2012, 22, 48.
    [18] H. E. Katz, A. J. Lovinger, J. G. Laquindanum, Chem. Mater. 1998, 10,
    457.
    [19] W. Wu, Y. Liu, D. Zhu, Chem. Soc. Rev. 2010, 39, 1489.
    [20] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T.
    Yui, J. Am. Chem. Soc. 2007, 129, 15732.
    [21] Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F.
    Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
    [22] M.-H. Yoon, A. Facchetti, C. E. Stern, T. J. Marks, J. Am. Chem. Soc.
    2006, 128, 5792.
    [23] R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H.
    Haukaas, K. R. Mann, L. L. Miller, C. D. Frisbie, Adv. Mater. 2003, 15,
    1278.
    [24] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem.
    Soc. 2012, 134, 4084.
    [25] J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Sölling, M. Giles,
    I. McCulloch, H. Sirringhaus, Chem. Mater. 2004, 16, 4772.
    [26] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G.
    Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho, Adv.
    Funct. Mater. 2005, 15, 77.
    [27] D. Treat Neil, A. Brady Michael, G. Smith, F. Toney Michael, J. Kramer
    Edward, J. Hawker Craig, L. Chabinyc Michael, Advanced Energy
    Materials 2010, 1, 82.
    [28] Y.-K. Lan, C.-I. Huang, The Journal of Physical Chemistry B 2009, 113,
    14555.
    [29] S. Schott, E. Gann, L. Thomsen, S.-H. Jung, J.-K. Lee, R. McNeill
    Christopher, H. Sirringhaus, Adv. Mater. 2015, 27, 7356.
    [30] J. Cho, H. Cheon Kwang, H. Ahn, H. Park Kwang, S.-K. Kwon, Y.-H.
    Kim, S. Chung Dae, Adv. Mater. 2015, 27, 5587.
    [31] X. Guo, F. S. Kim, M. J. Seger, S. A. Jenekhe, M. D. Watson, Chem.
    Mater. 2012, 24, 1434.
    [32] M. Yuan, M. Durban Matthew, D. Kazarinoff Peter, F. Zeigler David, H.
    Rice Andrew, Y. Segawa, K. Luscombe Christine, J. Polym. Sci., Part A:
    Polym. Chem. 2013, 51, 4061.
    [33] H. H. Fong, V. A. Pozdin, A. Amassian, G. G. Malliaras, D.-M. Smilgies,
    M. He, S. Gasper, F. Zhang, M. Sorensen, J. Am. Chem. Soc. 2008, 130,
    13202.
    [34] J. Lee, A. R. Han, J. Kim, Y. Kim, J. H. Oh, C. Yang, J. Am. Chem. Soc.
    2012, 134, 20713.
    [35] J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H.
    Lim, Y. Zhou, H. Su, B. S. Ong, Sci. Rep. 2012, 2, 754.
    [36] H. Huang, L. Yang, A. Facchetti, T. J. Marks, Chem. Rev. 2017, 117,
    10291.
    [37] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom,
    IEEE Electron Device Lett. 1997, 18, 87.
    [38] Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014,
    7, 2145.
    [39] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct.
    Mater. 2005, 15, 671.
    [40] W. H. Lee, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, Y. D. Park, Y. H.
    Kim, J. I. Han, K. Cho, Appl. Phys. Lett. 2007, 90, 132106.
    [41] H. Shim, A. Kumar, H. Cho, D. Yang, A. K. Palai, S. Pyo, ACS Applied
    Materials & Interfaces 2014, 6, 17804.
    [42] F. Zhang, C.-a. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H.
    Sirringhaus, D. Zhu, Adv. Mater. 2012, 25, 1401.
    [43] M. Tantiwiwat, A. Tamayo, N. Luu, X.-D. Dang, T.-Q. Nguyen, The
    Journal of Physical Chemistry C 2008, 112, 17402.
    [44] B. Nketia-Yawson, H.-S. Lee, D. Seo, Y. Yoon, W.-T. Park, K. Kwak, J.
    Son Hae, B. Kim, Y.-Y. Noh, Adv. Mater. 2015, 27, 3045.
    [45] K. Zhao, O. Wodo, D. Ren, U. Khan Hadayat, R. Niazi Muhammad, H.
    Hu, M. Abdelsamie, R. Li, Q. Li Er, L. Yu, B. Yan, M. Payne Marcia, J.
    Smith, E. Anthony John, D. Anthopoulos Thomas, T. Thoroddsen
    Sigurdur, B. Ganapathysubramanian, A. Amassian, Adv. Funct. Mater.
    2016, 26, 1737.
    [46] H. Yoo, H. Choi Hyun, J. Shin Tae, T. Rim, K. Cho, S. Jung, J.-J. Kim,
    Adv. Funct. Mater. 2015, 25, 3658.
    [47] P. S. Jo, D. T. Duong, J. Park, R. Sinclair, A. Salleo, Chem. Mater. 2015,
    27, 3979.
    [48] Z. Qi, F. Zhang, C.-a. Di, J. Wang, D. Zhu, Journal of Materials Chemistry
    C 2013, 1, 3072.
    [49] D. Li, L. J. Guo, Appl. Phys. Lett. 2006, 88, 063513.
    [50] Y.-H. Kim, B. Yoo, E. Anthony John, K. Park Sung, Adv. Mater. 2011, 24,
    497.
    [51] N. A. Azarova, J. W. Owen, C. A. McLellan, M. A. Grimminger, E. K.
    Chapman, J. E. Anthony, O. D. Jurchescu, Org. Electron. 2010, 11, 1960.
    [52] K.-J. Baeg, D. Khim, J. Kim, B.-D. Yang, M. Kang, S.-W. Jung, I.-K.
    You, D.-Y. Kim, Y.-Y. Noh, Adv. Funct. Mater. 2012, 22, 2915.
    [53] S. Liu, X. Zhang, M. Yin, H. Feng, J. Zhang, L. Zhang, W. Xie, ACS
    Applied Energy Materials 2018, 1, 103.
    [54] S. Bose, S. S. Keller, T. S. Alstrøm, A. Boisen, K. Almdal, Langmuir
    2013, 29, 6911.
    [55] N. Tsao Hoi, D. Cho, W. Andreasen Jens, A. Rouhanipour, W. Breiby Dag,
    W. Pisula, K. Müllen, Adv. Mater. 2008, 21, 209.
    [56] P. Miskiewicz, M. Mas-Torrent, J. Jung, S. Kotarba, I. Glowacki, E.
    Gomar-Nadal, D. B. Amabilino, J. Veciana, B. Krause, D. Carbone, C.
    Rovira, J. Ulanski, Chem. Mater. 2006, 18, 4724.
    [57] A. Pierre, M. Sadeghi, M. Payne Marcia, A. Facchetti, E. Anthony John,
    C. Arias Ana, Adv. Mater. 2014, 26, 5722.
    [58] J. Xu, Y. Wang, H. Shan, Y. Lin, Q. Chen, V. A. L. Roy, Z. Xu, ACS
    Applied Materials & Interfaces 2016, 8, 18991.
    [59] W.-Y. Lee, G. Giri, Y. Diao, J. Tassone Christopher, R. Matthews James,
    L. Sorensen Michael, C. B. Mannsfeld Stefan, W.-C. Chen, H. Fong Hon,
    B. H. Tok Jeffrey, F. Toney Michael, M. He, Z. Bao, Adv. Funct. Mater.
    2014, 24, 3524.
    [60] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim,
    S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature
    2011, 480, 504.
    [61] Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M.
    Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nature
    Materials 2013, 12, 665.

    QR CODE
    :::