跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳志安
Zhen-An Chen
論文名稱: 以屬性導向歸納法挖掘資料異常之研究
指導教授: 陳振明
Jen-ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
畢業學年度: 88
語文別: 中文
論文頁數: 72
中文關鍵詞: 資料挖礦屬性導向歸納法熵函數異常偵測
外文關鍵詞: Data Mining, Attribute-Oriented Induction, Entropy, Fraud Detection, Concept Lattice
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • 第1章 緒論 第1節 研究動機 第2節 研究目的 第3節 研究方法 第4節 論文結構 第2章 文獻探討 資料挖礦 第1節 關聯規則(Association Rules) 第2節 挖掘一般化和多階層的關聯規則 第3節 關聯規則的有趣性 第4節 資料歸納(Data Generalizaiton) 資訊含量 第5節ㄉㄧ熵 函數(Entropy) 異常偵測 第6節 異常偵測(Fraud Detection) 第3章 電信資料的結構 第1節 GSM/SS7通訊協定概觀 第2節 概念階層之結構 第4章 演算法 第1節 評估資訊含量 第2節 DAI演算法(Data Abnormal Induction) 第5章 特定族群樣式以及使用者樣式 第1節 特定族群樣式 第2節 單一使用者樣式 第6章 系統實作 第1節 系統環境 第2節 系統需求、介面與流程 第7章 結論與建議 第1節 結論與貢獻 第2節 未來研究方向與建議 第3節 研究限制 參考文獻

    [1] Agrawal, Rakesh and Ramakrishnan Srikant, “Fast Algorithms for Mining Association Rules,” Proc. of the 20th VLDB Conference Santiago, Chile, 1994.
    [2] Agrawal, Rakesh and R. Srikant, “Mining Sequential Patterns,” Proc. of the Int’l Conference on Data Engineering, Taipei, Taiwan, March 1995.
    [2] Agrawal, Rakesh and R. Srikant, “Mining Sequential Patterns,” Proc. of the Int’l Conference on Data Engineering, Taipei, Taiwan, March 1995.
    [2] Agrawal, Rakesh and R. Srikant, “Mining Sequential Patterns,” Proc. of the Int’l Conference on Data Engineering, Taipei, Taiwan, March 1995.
    [2] Agrawal, Rakesh and R. Srikant, “Mining Sequential Patterns,” Proc. of the Int’l Conference on Data Engineering, Taipei, Taiwan, March 1995.
    [2] Agrawal, Rakesh and R. Srikant, “Mining Sequential Patterns,” Proc. of the Int’l Conference on Data Engineering, Taipei, Taiwan, March 1995.
    [7] Fawcett, T. and F. Provost, “Adaptive Fraud Detection,” Data Mining and Knowledge Discovery, Vol. 1, No. 1, pp. 291-316, 1997.
    [8] Fawcett, T. and F. Provost, “Robust Classification Systems for Imprecise Environments,” Proc. Fifteenth Int. Conference on Artificial Intelligence (AAAI-98), 1998
    [8] Fawcett, T. and F. Provost, “Robust Classification Systems for Imprecise Environments,” Proc. Fifteenth Int. Conference on Artificial Intelligence (AAAI-98), 1998
    [10] Gary, Jim, Adam Bosworth, Andrew Layman and Hamid Pirahesh, “Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” IEEE 1996.
    [10] Gary, Jim, Adam Bosworth, Andrew Layman and Hamid Pirahesh, “Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” IEEE 1996.
    [10] Gary, Jim, Adam Bosworth, Andrew Layman and Hamid Pirahesh, “Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” IEEE 1996.
    [10] Gary, Jim, Adam Bosworth, Andrew Layman and Hamid Pirahesh, “Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” IEEE 1996.
    [14] Howker, Keith, John Shawe-Taylor and Peter Burge, “Detection of Fraud in Mobile Telecommunications,” Information Security Technical Report, Vol. 4, No. 1, 1999, pp. 16-28.
    [15] Han, Jiawei and Yongjian Fu, “Discovery of Multiple-Level Association Rules from Large Databases,” Proc. of the 21st VLDB Conference Zurich, Swizerland, 1995.
    [16] Kaufman, L. and P. J. rousseeuw, “Finding Groups in Data : An Introduction to Cluster Analysis,” John Wiley and Sons, 1990.
    [17] Li, C. S., P. S. Yu, and V. Castelli, “Hierarchy Scan: A Hierarchical Similarity Search Algorithm for Database of Large Sequences,” Proc. 12th Inte’l Conf. Data Eng., Feb. 1996.
    [17] Li, C. S., P. S. Yu, and V. Castelli, “Hierarchy Scan: A Hierarchical Similarity Search Algorithm for Database of Large Sequences,” Proc. 12th Inte’l Conf. Data Eng., Feb. 1996.
    [20] Quinlan, J. Ross, “Induction of Decision Trees,” Machine learning, Vol.1, pp.81, 1986, pp. 81-106.
    [21] Quinlan, J. Ross, “Simplifying Decision Trees,” Int. J. Man-Machine Studies, 27, 1987, pp. 221-234.
    [22] Srikant, R. and R. Agrawal, “Mining Quantitative Association Rules in Large Relational Tables,” SIGMOD 1996, pp.1-12.
    [23] Stolfo, S., D. Fan, W. Lee, A. Prodromidis and P. Chan, “Credit Card Fraud Detection Using Meta-learning: Issues and Initial Results,” Working Notes AAAI-97, 1997.
    [23] Stolfo, S., D. Fan, W. Lee, A. Prodromidis and P. Chan, “Credit Card Fraud Detection Using Meta-learning: Issues and Initial Results,” Working Notes AAAI-97, 1997.
    [25] Wheeler, R., S. Aitken, “Multiple algorithms for fraud detection,” Knowledge-Based Systems, Volume: 13, Issue: 2-3, April, 2000, pp. 93-99.

    QR CODE
    :::