跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮光碧
Quang Bac Nguyen
論文名稱: Synthesis, Structural Characterization and Properties of Organically Incorporated Transition Metal Germanates and Uranium Germanates
指導教授: 李光華
Kwang-Hwa Lii
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 243
中文關鍵詞: 過渡金屬鍺酸鹽高溫高壓水熱合成溶劑熱離子熱鈾金屬
外文關鍵詞: Transition metal, uranium, germanate, solvothermal, ionothermal, high-temperature, high-pressure hydrothermal synthesis
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Microporous materials have widespread applications including ion-exchange, selective sorption or separation, and catalysis processes. New microporous compounds with novel structures and interesting properties are extremely desired for growing demands in technology.
    This thesis descrives the synthesis, crystal structures and properties of organically incorporated transition metal germanates (series A), and uranium germanates (series B), which are classified on the basis of their structural characteristics and the methods of preparation. These compounds are synthesized by solvothermal, ionothermal, and high-temperature, high-pressure hydrothermal methods, and characterized by various spectroscopic techniques.
    In series A, a zinc germanate, A1, was synthesized by solvothermal method. Its structure contains neutral infinite chains with empty 18-membered ring channels. This is the first example in literature where the fluorine atoms in the germanate cluster are characterized by 19F NMR spectroscopy. A niobium germanate, A2, was synthesized by using a deep-eutectic solvent as the medium for the synthesis. Its layer structure consists of NbGe6X19 clusters with 10 membered-ring windows. This is the first example of organically templated niobium germanate where the structure was characterized by single-crystal X-ray diffraction. This compound displays an intense SHG response.
    In series B, the synthesis, crystal structures, and properties of three novel uranium germanates with various valence states of uranium are discussed. B1 is a mixed-valence uranium(IV,VI) germanate, Cs8UIV(UVIO2)3(Ge3O9)3•3H2O. B2 is a tetravalent uranium germanate containing four- and five-coordinate germanium, Cs4U([5]Ge2O2)([4]Ge3O9)2. B3 is a pentavalent uranium germanate containing four- and six-coordinate germanium, Cs3U[6]Ge([4]Ge3O9)2. These compounds have been structurally synthesized under high-temperature, high-pressure hydrothermal conditions and characterized by single-crystal X-ray diffraction. The valence states of uranium have been confirmed by X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-visible, and photoluminescence measurements.

    Abstract List of Publications Abbreviations Table of contents List of Figures List of Tables List of Schemes Chapter 1. Organically Incorporated Germanates and Transition Metal Germanates 1 1.1 Organically Incorporated Germanates 1 1.2 Organically Incorporated Transition Metal Germanates 15 1.2.1 Zirconium Germanates 15 1.2.2 Niobium Germanates 17 1.2.3 Nickel Germanates 18 1.2.4 Zinc Germanates 20 1.2.5 Cobalt, and Cadmium Germanates 22 1.3 Uranium Silicates and Uranium Germanates 27 1.4 Overview of the Research and Outlook 38 1.5 References 39 Chapter 2. Synthesis and Characterization Methods 42 2.1 Synthesis Methods 42 2.1.1 High-Temperature Solid-State Reactions 42 2.1.2 Flux-Growth Synthesis 43 2.1.3 Hydrothermal, Solvothermal, and Ionothermal Syntheses 43 2.2 Methods for Characterization of Materials 51 2.2.1 Single-Crystal X-ray Diffraction 52 2.2.2 Powder X-ray Diffraction 56 2.2.3 Solid-State Nuclear Magnetic Resonance Spectroscopy 56 2.2.4 Energy-dispersive X-ray Spectroscopy 58 2.2.5 Electron Probe Microanalysis 59 2.2.6 Total Reflection X-ray Fluorescence 59 2.2.7 Second-Harmonic Generation 59 2.2.8 Fourier Transform Infra-Red Spectroscopy 61 2.2.9 Thermogravimetric Analysis 61 2.2.10 Elemental Analysis 61 2.2.11 X-Ray Photoelectron Spectroscopy 62 2.2.12 Electron Paramagnetic Resonance 70 2.2.14 Optical Absorption and Photoluminescence 76 2.3 List of Reagents 79 2.4 List of Equipments 80 2.5 List of Compounds 81 2.6 References 82 Chapter 3. Synthesis, Crystal Structures and Properties of Organically Incorporated Transition Metal Germanates 85 3.1 A One-Dimensional Zinc Germanate Containing Hollow Columns with an Extra-Large 18-Membered Ring Window 85 3.2 An Organically Templated Niobium Germanate 103 3.3 References 115 Chapter 4. Synthesis, Crystal Structures, and Properties Of Uranium Germanates 117 4.1 A Mixed-Valence Uranium(IV,VI) Germanate Containing 9-Ring Channels, Cs8UIV(UVIO2)3(Ge3O9)3•3H2O 117 4.2 A Tetravalent Uranium Germanate Containing Four- and Five-coordinate Germanium, Cs4U([5]Ge2O2)([4]Ge3O9)2 136 4.3 A Pentavalent Uranium Germanate Containing Four- and Six-Coordinate Germanium, Cs3U[6]Ge([4]Ge3O9)2 149 4.4 References 166 Conclusions 168 Appendice 171

    (1) (a) Feng, S.; Xu, R. Acc. Chem. Res. 2001, 34, 239–247. (b) Cundy, C. S.; Cox, P. A. Chem. Rev. 2003, 103, 663–702. (c) Parnham, E. R.; Morris, R. E. Acc. Chem. Res. 2007, 40, 1005–1013. (d) Byrappaa, K.; Adschirib, T. Prog. Cryst. Growth Charact. Mater. 2007, 53, 117–166.
    (2) Lin, Z.-E.; Yang, G.-Y. Eur. J. Inorg. Chem. 2010, 2895–2902.
    (3) (a) Cheng, J.; Xu, R. J. Chem. Soc., Chem. Commun. 1991, 483–485. (b) Cheng, J.; Xu, R.; Yang, G. J. Chem. Soc., Dalton Trans. 1991, 1537–1540. (c) Jones, R. H.; Chen, J.; Thomas, J. M.; George, A.; Hursthouse, M. B.; Xu, R.; Li, S.; Lu, Y.; Yang, G. Chem. Mater. 1992, 4, 808–812.
    (4) (a) Li, H.; Eddaoudi, M.; Richardson, D. A.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 8567–8568. (b) Plévert, J.; Gentz, T. M.; Laine, A.; Li, H.; Young, V. G.; Yaghi, O. M.; O’Keeffe, M. J. Am. Chem. Soc. 2001, 123, 12706–12707. (c) Beitone, L.; Loiseau, T.; Férey, G. Inorg. Chem. 2002, 41, 3962–3966. (d) Plévert, J.; Gentz, T. M.; Groy, T. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Mater. 2003, 15, 714–718. (e) Pan, Q.; Li, J.; Christensen, K. E.; Bonneau, C.; Ren, X.; Shi, L.; Sun, J.; Zou, X.; Li, G.; Yu, J.; Xu, R. Angew. Chem., Int. Ed. 2008, 47, 7868–7871. (f) Shi, L.; Bonneau, C.; Li, Y.; Sun, J.; Yue, H.; Zou, X. Cryst. Growth Des. 2008, 8, 3695–3699. (g) Su, J.; Wang, Y.; Wang, Z.; Liao, F.; Lin, J. Inorg. Chem. 2010, 49, 9765–9769. (h) Guo, B.; Inge, A. K.; Bonneau, C.; Sun, J.; Christensen, K. E.; Yuan, Z.-Y.; Zou, X. Inorg. Chem. 2011, 50, 201–207. (i) Inge, A. K.; Sun, J.; Moraga, F; Guo, B.; Zou, X. CrystEngComm 2012, 14, 5465–5471.
    (5) (a) Li, H.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 10569–10570. (b) Medina, M. E.; Iglesias, M.; Monge, M. A.; Gutiérrez-Puebla, E. Chem. Commun. 2001, 2548–2549. (c) Lin, Z.-E.; Zheng, S.-T.; Yang, G.-Y. Z. Anorg. Allg. Chem. 2006, 354–358.
    (6) (a) Tripathi, A.; Young, V. G. Jr, Johnson, G. M.; Cahill, C. L.; Parise, J. B. Acta Crystallogr. 1999, C55, 496–499. (b) Li, H.; Eddaoudi, M.; Yaghi, O. M. Angew. Chem., Int. Ed. 1999, 38, 653–655. (c) Bu, X.; Feng, P.; Stucky, G. D. Chem. Mater. 2000, 12, 1505–1507. (d) Zhou, Y.; Zhu, H.; Chen, Z.; Chen, M.; Xu, Y.; Zhang, H.; Zhao, D. Angew. Chem., Int. Ed. 2001, 40, 2166–2168. (e) Pitzschke, D.; Näther, C.; Bensch, W. Z. Naturforch. 2003, 58b, 205–210. (f) Medina, M. E.; Iglesias, M.; Snejko, N.; Gutiérrez-Puebla, E.; Monge, M. A. Chem. Mater. 2004, 16, 594–599. (g) Xu, Y.; Fan, W.; Elangovan, S. P.; Ogura, M.; Okubo, T. Eur. J. Inorg. Chem. 2004, 4547–4549. (h) Attfield, M. P.; Al-Ebini, Y.; Pritchard, R. G.; Andrews, E. M.; Charlesworth, R. J.; Hung, W.; Masheder, Ben J.; Royal, D. S. Chem. Mater. 2007, 19, 316–322.
    (7) (a) Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O'Keeffe, M. Nature 2005, 437, 716–719. (b) Bonneau, C.; Sun, J.; Sanchez-Smith, R.; Guo, B.; Zhang, D.; Inge, A. K.; Edén, M.; Zou, X. Inorg. Chem. 2009, 48, 9962– 9964. (c) Inge, A. K.; Peskov, M. V.; Sun, J.; Zou, X. Cryst. Growth Des. 2012, 12, 369–375. (d) Huang, S.; Inge, A. K.; Yang, S.; Christensen, K. E.; Zou, X.; Sun, J. Dalton Trans. 2012, 41, 12358–12364.
    (8) (a) Christensen, K. E.; Shi, L.; Conradsson, T.; Ren, T.-z.; Dadachov, M. S.; Zou, X. J. Am. Chem. Soc. 2006, 128, 14238–14239. (b) Ren, X.; Li, Y.; Pan, Q.; Yu, J.; Xu, R.; Xu, Y. J. Am. Chem. Soc. 2009, 131, 14128–14129. (c) Peskov, M. V.; Zou, X. J. Phys. Chem. C 2011, 115, 7729–7739.
    (9) (a) Zhang, H.-X.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Inorg. Chem. 2003, 42, 6595–6597. (b) Pan, Q.; Li, J.; Ren, X.; Wang, Z.; Li, G.; Yu, J.; Xu, R. Chem. Mater. 2008, 20, 370–372. (c) Ren, X.; Li, Y.; Shao, L.; Yu, J.; Xu, R. Z. Anorg. Allg. Chem. 2012, 1345–1350.
    (10) (a) Li, H.; Eddaoudi, M.; Plévert, J.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2000, 122, 12409–12410. (b) Liu, Z.; Weng, L.; Zhou, Y.; Chen Z.; Zhao, D. J. Mater. Chem. 2003, 13, 308–311. (c) Liu, Z.; Weng, L.; Chen, Z.; Zhao, D. Inorg. Chem. 2003, 42, 5960–5965. (d) Plévert, J.; Sanchez-Smith, R.; Gentz, T. M.; Li, H.; Groy, T. L.; Yaghi, O. M.; O'Keeffe, M. Inorg. Chem. 2003, 42, 5954–5959.
    (11) (a) Francis, R. J.; Jacobson, A. J. Angew. Chem., Int. Ed. 2001, 40, 2879–2881. (b) Francis, R. J.; Jacobson, A. J. Chem. Mater. 2001, 13, 4676–4680.
    (12 (a) Lin, Z.-E.; Zhang, J.; Zhao, J.-T.; Zheng, S.-T.; Pan, C.-Y.; Wang, G.-M.; Yang, G.-Y. Angew. Chem., Int. Ed. 2005, 44, 6881–6884. (b) Huang, S.; Christensen, K.; Peskov, M. V.; Yang, S.; Li, K.; Zou, X.; Sun, J. Inorg. Chem. 2011, 50, 9921– 9923. (c) Luo, W.; Mu, W.-Q.; Zhang, X.; Zhang, X.; Pu, Y.-Y.; Zhu, Q.-Y.; Dai, J. Inorg. Chem. 2012, 51, 1489–1494.
    (13) (a) Bu, X.; Feng, P.; Stucky, G. D. Chem. Mater. 2000, 12, 1811–1813. (b) Wang, C.-M.; Lin, C.-H.; Yang, C.-W.; Lii, K.-H. Inorg. Chem. 2010, 49, 5783–5785.
    (14) Julius, N, N.; Choudhury, A.; Rao, C. N. R. J. Solid State Chem. 2003. 170, 124–129.
    (15) Lin, Z. E; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Microporous Mesoporous Mater. 2004, 74, 205–211.
    (16) (a) Burns, P. C. In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S. V., Burns, P. C., Tananaev, I. G., Eds.; Elsevier: Amsterdam, Netherlands, 2007; Chapter 1, pp 1– 30. (b) Grenthe, I.; Drożdżyński, J.; Fujino, T.; Buck, E. C.; Albrecht-Schmitt, T. E.; Wolf, S. F. In The Chemistry of the Actinide and Transactinide Elements; Morss, L. R., Edelstein, N. M., Fuger, J., Eds.; Springer: New York, 2011; Vol. 1, pp 253– 698.
    (17) (a) Burns, P. C.; Ewing, R. C.; Hawthorne, F. C. Can. Mineral. 1997, 35, 1551–1570. (b) Burns P. C. Can. Mineral. 2005, 43, 1839–1894.
    (18) (a) Burns, P. C. Rev. Mineral. 1999, 38, 23–90. (b) Finch, R.; Murakami, T. Rev. Mineral. 1999, 38, 91–179. (c) Ling, J.; Morrison, J. M.; Ward, M.; Poinsatte-Jones, K.; Burns, P. C. Inorg. Chem. 2010, 49, 7123–7128. (d) Morrison, J. M.; Moore-Shay, L. J.; Burns, P. C. Inorg. Chem. 2011, 50, 2272–2277.
    (19) (a) Wang, X.; Huang, J.; Liu, L.; Jacobson, A. J. J. Mater. Chem. 2002, 12, 406–410. (b) Wang, X.; Huang, J.; Jacobson, A. J. J. Am. Chem. Soc. 2002, 124, 15190–15191. (c) Huang, J.; Wang, X.; Jacobson, A. J. J. Mater. Chem. 2003, 13, 191–196.
    (20) (a) Chen, C.-S.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 935–940. (b) Lin, C.-H.; Chiang, R.-K.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 2068–2069. (c) Liu, H.-K.; Chang, W.-J.; Lii, K.-H. Inorg. Chem. 2011, 50, 11773–11776.
    (21) Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.
    (22) (a) Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Science 1955, 121, 608– 609. (b) Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Am. Mineral. 1956, 41, 675–688. (c) Uvarova, Y. A.; Sokolova, E.; Hawthorne, F. C.; Agakhanov, A. A.; Pautov, L. A. Can. Mineral. 2004, 42, 1005–1011.
    (23) Liu, H.-K.; Lii, K.-H. Inorg. Chem. 2011, 50, 5870–5872.
    (24) Durif, P. A. Acta Crystallogr. 1956, 9, 533.
    (25) (a) Kraus, K. A.; Nelson, F.; Johnson, G. L. J. Am. Chem. Soc. 1949, 71, 2510–2517. (b) Kraus, K. A.; Nelson, F. J. Am. Chem. Soc. 1949, 71, 2517–2522. (c) Selbin, J.; Ortego, J. D. Chem. Rev. 1969, 69, 657–671.
    (26) (a) Chen, C.-S.; Lee, S.-F.; Lii, K.-H. J. Am. Chem. Soc. 2005, 127, 12208–12209. (b) Lin, C.-H.; Chen, C.-S.; Shiryaev, A. A.; Zubavichus, Y. V.; Lii, K.-H. Inorg. Chem. 2008, 47, 4445–4447.
    (27) (a) Burns, P. C.; Finch, R. J. Am. Mineral. 1999, 84, 1456–1460. (b) Hawthorne, F. C.; Finch, R. J.; Ewing, R. C. Can. Mineral. 2006, 44, 1379–1385.
    (28) (a) Belai, N.; Frisch, M.; Ilton, E. S.; Ravel, B.; Cahill, C. L. Inorg. Chem. 2008, 47, 10135–10140. (b) Lin, C.-H.; Lii, K.-H. Angew. Chem., Int. Ed. 2008, 47, 8711–8713.
    (29) Lee, C.-S.; Wang, S.-L.; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 15116–15117.
    (30) Lee, C.-S.; Lin, C.-H.; Wang, S.-L.; Lii, K.-H. Angew. Chem., Int. Ed. 2010, 49, 4254–4256.
    (31) (a) Burns, P. C.; Finch, R. J.; Hawthorne, F. C.; Miller, M. L.; Ewing, R. C. J. Nucl. Mater. 1997, 249, 199–206. (b) Bénard, P.; Louër, D.; Dacheux, N.; Brandel, V.; Genet, M. Chem. Mater. 1994, 6, 1049–1058. (c) Diwu, J.; Albrecht-Schmitt, T. E. Inorg. Chem. 2012, 51, 4432–4434.

    QR CODE
    :::