跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅偉中
Wei-Zhong Luo
論文名稱: 偶氮金屬配位化合物合成鑑定與性質探討
Synthesis and Property of Metal Azo Compounds
指導教授: 劉陵崗,賴重光
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 152
中文關鍵詞: 偶氮微流體
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 閃化學(flash chemistry)的有機合成,是指不穩定的中間物質,僅能
    短時間存活,反應過程只需要一秒或更短的時間,無法使用常規的批
    次反應達成。但在微流體反應系統中,比表面積大幅增加,熱傳及質
    傳快速,能使反應快速的進行,故閃化學反應在微流體反應器中卻非
    常適合。簡單調整實驗參數,便可使有機合成反應在微流體反應器中
    得到理想的效果。本論文中利用微流體反應之系統合成4個偶氮化合
    物並使之金屬化。
    4個偶氮化合物的UV-Vis光譜中,呈現出明顯的π→π*峯訊和n→π*
    峯訊。而偶氮化合物金屬化後,UV-Vis光譜中發現π→π*躍遷兩個峯
    訊僅有輕微的位移和峯訊強度的變化,其他大致相同,但n→π*峯訊
    因為金屬與配體鍵結的關係,產生紅移現象。
    鉻(Cr3+)金屬偶氮配體化合物的ESI質譜分析,發現其中心Cr3+離子
    在ESI過程中會還原成Cr2+。Cr2+水溶液離子交換速率比Na+水溶液離
    子交換速率大約快2倍,游離化過程中產生陽離子交換,在質譜圖中
    看到M及M-25的峯訊。


    A flash reaction in organic chemistry is a reaction, in which an
    unstable intermediate is with very short life and the reaction is completed
    in one second or less. Consequently it is very difficult to conduct such a
    reaction in common batch type setups to successfully obtain the end
    product. On the other hand, a microfluidic reactor system exhibits very
    large specific area in setup and has very great mass transfer and heat
    transfer property. A microfluidic reactor allows fast heating or cooling,
    and thus is suitable for a flash reaction and in general favoring rapid
    reactions. One could achieve very good results to run organic reactions in
    microfluidic reactors by simple adjustment of experimental parameters.
    In this thesis, the preparation of 4 azobenzene derivatives was
    successfully demonstrated using the microfluidic reactor system. The
    azobenzenes were used as chelates to coordinate to chromium and iron to
    form metallic azo-dyes.
    The 4 azobenzenes and 8 metallic azo-dyes were studied with the
    UV-Vis spectroscopic method. As ligands, the azobenzenes show clear
    π−π* and n−π* absorption bands, while the metallic azo-dyes show slight
    shift/change on π−π* absorption bands yet pronounced red-shifts on n−π*
    absorption bands.
    The 4 azobenzenes and 8 metallic azo-dyes were all analyzed with
    mass spectroscopic method using the electrospray ionization source. The
    Cr+3 azo-dyes were interesting in that the central Cr+3 metal ions along the ESI process could be reduced to Cr+2 metal ions that led to exchange of
    Cr+2 metal ions with the counter Na+ metal ions. The negative mass
    spectra of Cr+3 azo-dyes revealed very strong peaks at m/e = [M] and
    [M-25], where M is the molecular ion, agreeing to the facile water
    exchange rates for Cr+2 and Na+ but inert water exchange for Cr+3. No
    such exchange was observed for the analogous Fe+3 azo-dyes: slow water
    exchange being known for both Fe+3 and Fe+2 metal ions.

    圖目錄..............................iv 表目錄.............................vii 附錄目錄......................... viii 摘要...............................xii Abstract.........................xiii 謝誌….............................. xv 第一章、緒論..........................1 1-1 微流體反應器......................1 1-2 微流體反應器簡介...................2 1-3 微流體反應器在化學反應上的應用......4 1-4 偶氮苯............................7 1-5 偶氮苯的合成.......................8 1-6 偶氮化合物應用.....................9 1-7 偶氮金屬化合物發展.................10 1-8 光碟工作原理...................…...11 1-9 論文研究之目的....................12 第二章、實驗部分......................14 2-1 藥品.............................14 2-2 儀器.............................15 2-2-1 核磁共振譜儀(Nuclear Magnetic Resonance Spectrometer, MR)...................15 2-2-2 紫外光可見光譜儀(Ultraviolet-visible Spectrophotometer, UV-Vis)..................................16 2-2-3 質譜儀(Mass Spectrometer, MS)……................................16 2-2-4 紅外線光譜儀(Infrared Spectrophotometer, IR)………….16 2-2-5 單晶X光繞射儀...............17 2-2-6 酸鹼度計(pH meter) ..................18 2-2-7 推進幫..............................19 2-2-8 微流體反應系統.......................20 2-3 實驗流程...............................21 2-3-1 化合物1 (APSA-PMP)的製備.............22 2-3-2 化合物2 (APMS-PMP)的製備............23 2-3-3 化合物3 (4-DMAP-PMP)的製備..........25 2-3-4 化合物4 (5-DMAP-PMP)的製備.........26 2-3-5 化合物5 (APSA-PMP-Cr)的製備..........28 2-3-6 化合物6 (APSA-PMP-Fe)的製備..............29 2-3-7 化合物7 (APMS-PMP-Cr)的製...............30 2-3-8 化合物8 (APMS-PMP-Fe)的製備...........31 ii 2-3-9 化合物9 (4-DMAP-PMP-Cr)的製備..........32 2-3-10 化合物10 (4-DMAP-PMP-Fe)的製備........33 2-3-11 化合物11 (5-DMAP-PMP-Cr)的製備........34 2-3-12 化合物12 (5-DMAP-PMP-Fe)的製備........35 第三章、結果與討論............................36 3-1 微流反應系統之參數最佳化..................36 3-1-1 批次反應和微流反應比較...............36 3-1-2 微流反應系統........................37 3-2 配體及金屬鉗合化合物特色...............41 3-2-1 IR光譜.............................42 3-2-2 1H NMR光譜..........................46 3-2-3 單晶X-ray...........................47 3-2-4 UV-Vis光譜..........................55 3-3 中心金屬離子與鈉離子在ESI質譜分析過程中陽離子交換行 為......59 3-4 結論..................................64 第四章、參考文獻...........................65 第五章、附錄...............................69

    1. Terry, S. C.; Jerman , J. H.; Angel, J. B. IEEE Trans. Electron Devices. 1979, 26, 1880-1886.
    2. Haswell, S. J.; Middleton, R. J.; O’Sullivan, B.; Skelton, V.; Wattsa, P.; Styringb, P. Chem. Commun. 2001, 391-398.
    3. Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M. Angew. Chem. Int. Ed. 2004, 43, 406-446.
    4. Yoshida, J. Flash Chemistry:Fast Chemical Synthesis in Flow Microreactors. In processdings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences. 2010, 758-760.
    5. Ehrfeld, H.; Hessel, V.; Löwe, H. Microreactors: New Technology
    for Modern Chemistry. Wiley: Weinheim, 2000, p 7.
    6. Wirth, T. Microreactors in Organic Synthesis and Catalysis Wiley: Weinheim, 2008, pp 124-127.
    7. Whitesides, G. M. Nature 2006, 442, 368-373.
    8. Schwalbe, T.; Autze, V.; Hohmann, M.; Stirner, W. Org. Process Res. Dev. 2004, 8, 440-454.
    9. Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300-2318.
    10. Plouffe, P.; Macchi, A. Org. Process Res. Dev. 2014, 18, 1286-1294.
    11. Yoshida, J. Chem. Commun. 2005, 4509-4516.
    12. Yoshida, J.; Takahashi, Y.; Nagaki, A. Chem. Commun. 2013, 49, 9896-9904.
    13. Nagaki, A.; Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.;Yoshida, J. J. Am. Chem. Soc. 2004, 126, 14702-14703.
    14. Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. Lab Chip 2002, 2, 62-64.
    15. Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, Lab Chip 2004, 4, 171-173.
    16. Mitscherlich, E. Ann. Pharm. 1834, 12, 311-314.
    17. Hofmann, P. Ann. Pharm. 1860, 324.
    18. Glaser, C. Z. Chem. 1866, 308-310.
    19. Hantzsch, A.; Reddelien, G. Die Diazoverbindungen. Springer: Berlin,1921
    20. Merino, E. Chem. Soc. Rev. 2011, 40, 3835-3853.
    21. Hartley, G. S. J. Chem. Soc. 1938, 633.
    22. Koh J,; Greaves A. Dye Pigm. 2001, 50, 117-126.
    23. Wang, S.; Shen, S.; Xu, H. Dye Pigm. 2000, 44, 195-198.
    24. Li, X.; Wu, Y.; Gu, D.; Gan, F. Mat. Scu. E. B. 2009, 158, 53-57
    25. Gan, F.; Hou, L.; Wang, G.; Liu, H. Mat. Scu. E. B. 2000, 76, 63-68.
    26. Sabi, Y.; Tamada, S.; Iwamura, T.; Oyamada, M.; Bruder, F.; Oster, R. Berneth, H. Hassenrück, K. Jpn. J. Appl. Phys., Part 1. 2003, 42, 1056-1058.
    27. Chen, Z.; Wu, Y.; Gu, D.; Gan, F. Dye Pigm. 2008, 76, 624-631.
    28. Li, X.; Wu,Y.; Gu, D.; Gan, F. Dye Pigm. 2010, 86, 182-189.
    29. Garrigos, M. C.; Reche, F.; Marin, M. L. J. Chromatogr. A. 2002, 976, 309-317.
    30. Karaman, Y.; Menek, N.; Bicer, F.A.; Olmez,H. Int. J.
    Electrochem.Soc. 2015, 10, 3106-3116. 66
    31. Wang, S.; Shen, S.; Xu, H.; Gu, D.; Yin, J.; Tang, X. Dye Pigm. 1999, 42, 173-177.
    32. Wang, S.; Shen, S.; Xu, H.; Gu, D.; Yin, J.; Tang, X.; Mater. Sci. Eng. B. 2000, 76, 69-72.
    33. Song, H.; Chen, K.; Tian, H. Dye Pigm. 2002, 53, 257 -262.
    34. Tsutomu, S.; Yasunobu, U. Optical Recording Medium.
    JP2001180119, 2001.
    35. Yasuhiro, A.; Yasunobu, U. Optical Recording Medium.
    JP2002144724, 2002.
    36. Geng, Y.; Gu, D.; Gan, F. Mater. Sci. Eng. B. 2004, 110, 115-118.
    37. Park, H.; Kim, E.; Kim, D.; Lee, H. Bull. Chem. Soc. Jpn. 2002, 75, 2067-2070.
    38. Gan, F.; Hou, L. Proceeding of SPIE. 2003, 5060,1-6.
    39. Huang, T.; Lu, Y.; Liao, W.; Huang, C. IEEE Trans Magn 2007, 43, 867-869.
    40. Chang, D.; Yoon, D.; Ro, M.; Hwang, I.; Park, I.; Shin, D. Jpn. J. Appl. Phys. 2003, 42, 754-758.
    41. Chen, Z.; Wu, Y.; Gu, D.; Gan, F. Dye Pigm. 2008, 76, 624-631. 42. Takashi, M.; Yutaka, K. WO 2006104196, 2006.
    43. Horie, M.; Kurose, Y.; Kubo, H.; Kiyono, K. WO2006009107, 2006.
    44. Takashi, M.; Hisashi, S.; Kenichi, S.; Mayumi, K.; Naoyuki, U.; Hideki, T. WO2007007748, 2007.
    45. Eigen, M. Pure Appl. Chem.1963, 6,105.
    46. Peng, Q.; Li,M.; Gao, K.; Cheng, L. Dye Pigm. 1990, 14, 89-99.
    47. Li, X.; Wu,Y.; Gu ,D.; Gan, F. Dye Pigm. 2010, 86, 182-189.
    48. Saeyda, A. A.; Sanaa, M. E.; Magdy, W. P.; Esam, M. E. J. Mol.Struct. 2015 1099, 567-578.
    49. Li, X. Y.; Wu, Y. Q.; Gua, D. D.; Gana, F. X.; Mater. Sci. Eng. B. 2009, 158 , 53–57.
    50. Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S. Spectrochim. Acta A. 2012, 96, 493–500.
    51. Ozkan, G.; Kose, M.; Zengin, H.; McKee, V.; Kurtoglu, M. Spectrochim Acta A. 2015, 150, 966–973.
    52. Anitha, C.; Sheela, C.; D.Tharmaraj, P.; Sumathi S. Spectrochim. Acta A. 2012, 96, 493–500.
    68

    QR CODE
    :::