| 研究生: |
羅志明 Chih-Ming Lo |
|---|---|
| 論文名稱: |
Ti-6Al-4V鈦合金電子束銲件之疲勞裂縫成長研究 |
| 指導教授: |
黃俊仁
Jiun-Ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 鈦合金 、Ti-6Al-4V 、電子束銲接 、疲勞裂縫成長 、變動振幅負載 |
| 外文關鍵詞: | titanium alloy, Ti-6Al-4V, electron beam welding, fatigue crack growth, variable amplitude loading |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以Ti-6Al-4V鈦合金為實驗材料,選擇對接型式進行電子束銲接(EBW),並檢視鈦合金銲件在等負荷振幅及變動負荷振幅負載下之疲勞裂縫成長性質以及金相、硬度與拉伸之機械性質。
研究結果顯示,金相方面,銲道金相組織為針狀α麻田散體,而熱影響區則由初晶α及針狀α麻田散體所組成。硬度結果顯示,銲道區針狀α麻田散體硬度最高,熱影響區次之。在拉伸性質方面,平滑試棒之拉伸強度為885.9 MPa,斷裂位於母材。在疲勞裂縫成長方面,由於銲道疲勞強度高於母材,導致疲勞裂縫實驗初期失敗,經過重新設計試片在試片的兩側開溝槽,以利裂縫沿銲道成長。在變動振幅疲勞裂縫成長實驗,成功利用柔性法及特殊分析方法測量得到裂縫成長數據。
In this study, the experimental material was T i-6Al-4V titanium alloy. Butt joint type was selected for electron beam welding (EBW). Fatigue crack growth rate of the titanium alloy weldment under both constant amplitude loading and variable amplitude loading were measured. Also, the microstructure, microhardness and tensile properties of the weldment were evaluated.
The results showed that needle-like α-martensite appeared in the EBW weld. The microstructure in the heat-affected zone was composed of primary α and needle-like α martensite. The highest microhardness occurred in the fusion zone followed by the heat affected zone. Tensile strength of the smooth specimen was 885.9 MPa, and the broken position located at the base metal. With respect to the fatigue crack growth of Ti-6Al-4V EBW weldment under constant amplitude loading, the fatigue resistance of weld metal was higher than that of base metal. The valid fatigue crack growth test of weld metal was performed by using a side-grooved specimen. The fatigue crack growth of the weldment under variable amplitude loading was successfully measured by a compliance method.
[1] 曾婉如,“鈦金屬市場現況與應用商機“,中工高雄會刊,第21卷,第1期。
[2] 洪祖昌,”從電子束焊接談技術引進與研究發展”,機械工業,66-71頁,1985。
[3] G. LaFlamme, J. Knoefel, “Application of electron beam welding,” International Conference on Power Beam Technology, Brighton, 10-12 September, Abington, Cambridge, 1986, pp. 59-74.
[4] R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, “Metal Fatigue in Engineering,” John Wiley & Sons, New York, 2nd ed., 2000.
[5] Fatigue design handbook, 2nd ed., Society of Automotive Engineers, Inc., 1988.
[6] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation law,” Journal of Basic Engineering, Vol. D85, pp. 528-534, 1963.
[7] R. G. Forman, V. E. Kearney and R. M. Engle, “Numerical analysis of crack propagation in cyclic-loaded structures,” Journal of Basic Engineering, Vol. D89, No. 3, pp. 459-464, 1967.
[8] O. E. Wheeler, “Spectrum loadings and crack growth,” Journal of Basic Engineering, Vol. D94, No. 1, pp. 181-186, 1972.
[9] J. Willenborg, R. M. Engle, and H. A. Wood, “A crack growth retardation model using an effective stress concept,” AFFDL TM-71-1FBR, Jan. 1971.
[10] W. Elber, "Fatigue crack propagation," Ph. D. Thesis, University of New South Wales, Australia, 1968.
[11] J. C Newman, Jr., “A crack closure model for predicting fatigue crack growth under aircraft spectrum loading,” in Method and Model for Predicting Fatigue Crack Growth under Random Loading, ASTM STP 748, American Society for Testing and Materials, Philadelphia, pp. 53-84, 1981.
[12] I. M. Austen and E. F. Walker, “Corrosion fatigue crack growth rate information for offshore life prediction,” Steel in Marine Structure, C. Noordhoek and J. de Back, Ed., p. 859, 1987.
[13] “Structural Welding Code - Titanium” American National Standard AWS D 1.9, American Welding Society, 2007.
[14] 洪胤庭,“純鈦及鈦合金特性及製程介紹”,中工高雄會刊,第21卷,第1期,16-18頁。
[15] 朱建平、陳瑾惠、簡嘉毅,鈦-鉬合金熱處理後拉伸疲勞性質研究,碩士論文,國立成功大學材料科學及工程學系所,2005.
[16] 陸美源,“ Ti-6Al-4V與Ti-15V-3Cr-3Al-3Sn 銲件之高溫缺口拉伸性質研究”,國立台灣海洋大學,碩士論文,2011
[17] 賴耿陽,“金屬鈦(理論與應用) ”,台南:復漢出版社,50-56頁,2000
[18] 丁逸勳,”Ti-6Al-4V、SP700銲件機械性質特性”,碩士論文,台灣海洋大學材料工程所,2006。(指導教授:蔡履文)
[19] 丁逸勳,”環境效應對雙相 α + β 鈦合金雷射銲件之疲勞裂縫成長行為”,博士論文,台灣海洋大學材料工程所,2011。(指導教授:蔡履文)
[20] 張世宗,”Ti-15V-3Cr-3Sn-3Al缺口拉伸性質及疲勞裂縫成長行為”,碩士論文,台灣海洋大學材料工程所,2012。(指導教授:蔡履文)
[21] H. U. Qi, ”Fatigue crack growth of titanium alloy joints by electron beam welding,” Rare Metals, pp. 1-6, 2013.
[22] L. B. Ji, ”Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints,” Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, Vol. 21, No. 1, pp. 102-109, 2011.
[23] T. S. Balasubramanian, ”Fatigue performance of gas tungsten arc, electron beam, and laser beam welded Ti-6Al-4V alloy joints,” Journal of Materials Engineering and Performance, Vol. 20, No. 9, pp. 1620-1630, 2011.
[24] K. P. Rao, ”Fracture toughness of electron beam welded Ti-6Al-4V,” Journal of Materials Processing Technology, Vol. 199, No. 1, pp. 185-192, 2008.
[25] K. K. Murthy, ”Fracture toughness of Ti-6Al-4V after welding and post weld heat treatment ” Welding Journal, Vol. 76, No. 2, p 81s-91s, 1997.
[26] J. L. Barreda, ”Influence of the filler metal on the mechanical properties of Ti-6Al-4V electron beam weldments,” Vacuum, Vol. 85, No. 1, pp. 10-15, 2010.
[27] A. Wohler, “Uber die Festigkeitversuche mit Eisen und Stahl,” Zeitschrift fur
Bauwesen, Vol. VIII, X, XIII, XVI, and XX, 1860/70, Englishaccount of this work
is in Engineering, Vol. 11, 1871.
[28] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Of London, A221, pp.163-197.
[29] G. R. Irwin, "Fracture Dynamics Fracturing of Metals," American Society for Metals, Cleveland, OH, 1949, pp.147-166.
[30] H. L. Ewalds and R. J. H. Wanhill, Fracture Mechanics, First Published in 1984, p. 13.
[31] G. R. Irwin, “Analysis of Stresses and Strains Near The End of a Crack
Traversing a Plate,” Journal of Applied Mechanics, Trans. of ASME, Vol. E24, 1957, pp.361-364.
[32]T. L. Anderson, “Fracture Mechanics: Fundamentals and Applications”, 3rd edition, CRC Press, 2005.
[33] R. I. Stephens, A. Fatemi, R. R. Stephens, H. O. Fuchs, “Metal Fatigue in Engineering”, 2nd edition, John Wiley & Sons, 2001, pp. 122-176.
[34] “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, Annual Book of ASTM Standards, E 399-90.
[35] E. Zahavi, “FATIGUE DESIGN : Life Expectancy of Machine Parts,”CRC Press. 1996.
[36] W. Elber, “Fatigue Crack Closure under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, No. 1, 1970, pp. 37-45
[37] W. Elber, “The Significance of Fatigue Crack Closure”, Damage Tolerance in Aircraft Structures, ASTM STP 486, 1971, pp. 230-242.
[38] G.P. Cherepanov, “Crack propagation in continuous media”,PMM vol. 31, no. 3, 1967, pp. 476–488
[39] J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks”, Journal of Applied Mechanics, Vol. 35, 1968, pp. 379-386.
[40] “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, ASTM E647-11.
[41] S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
[42] Standard Specification for Titanium and Titanium Alloy Strip, Sheet, and Plate
[43] “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM E8, American Society for Testing and Materials, United States of America, 2012.
[44] Noda, N A. “Stress concentration factors for round and flat test specimens with notches.” International journal 17.3,1995, pp. 163-178.
[45] “Standard Test Method for Measurement of Fracture Toughness”, ASTM E1820-17a
[46] “Standard Practice for Microetching Metals and Alloys,” ASTM-E407, American Society for Testing and Materials, United States of America, 2012.
[47] “Method of Vickers Hardness Test,” CNS 2115 Z8004,Chinese National Standards, Taiwan, 1983.
[48] 李東明,“不同冷卻速率對雙相不銹鋼顯微組織與衝擊試驗的影響”,國立中山大學,碩士論文,2003。