| 研究生: |
陳冠宇 Kuan-Yu Chen |
|---|---|
| 論文名稱: |
以數據導向進行關鍵分群的預防保養策略 Applying Data Driven Approach to Cluster Components for Preventive Maintenance |
| 指導教授: | 許秉瑜 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 資料驅動 、分群 、預防保養 |
| 外文關鍵詞: | Data Driven, Clustering, Preventive Maintenance |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業的進步,資本設備進口對總進口額來說佔相當的比例,以2018年為例已達到15%,而設備保養對設備來說一直是個很重要的議題,而將預防保養的概念運用於設備保養,可以有效減少停機時間,提高機器運作的效率。本研究不同於其他預防保養策略針對單一零件或是單一機台規劃保養策略,而是參考零件間壽命資料的相似性,以群組的概念決定預防保養的時間點。
在研究中會先分析零件壽命資料的相似性,再透過將相似度轉為距離矩陣並進行零件分群,接著計算出個別群組可以節省的時間和成本,挑出適當的群組作為預防保養策略的依據,並且以這樣的實驗架構進行實作分析,而在研究實作中,也藉由分析汽車零件製造廠的資料,提出適當的預防保養策略,將產線上的所有零件提出可以分群進行預防保養的10個組合,估算出依照預防保養策略所需要花費的時間和成本,並且和原始的保養策略做比較,結果可看出研究所提出的預防保養策略可以有效減少停機時間,並且提升產線的稼動率和OEE。
本研究所提出的方法確實減少停機時間並提升產線運作的效率,在實務中也可以減少因為不斷維修零件時,造成重複拆裝設備所花費的時間成本,未來也希望能夠將方法運用於像是MES系統的先進設備,或是能將方法運用於不同類型的產線上。
Utilizing preventive maintenance can reduce machine’s shutdown and improve the equipment efficiency. Traditional preventive maintainance methods focus on maintaining single component. The research, however, strives to maintain a group of components to further reduce the maintenance time.
Components are clustered into group according to the their distributions of lifespans. Clusters that save the most maintenance costs are recommended to managers for maintenance scheduling. The methodology is applied to an auto component company for experiments. The results show that OEE is improved from 81% to 84%.
[1] Huang, Y.-S., et al. (2015). "Cost analysis of two-dimensional warranty for products with periodic preventive maintenance." Reliability Engineering & System Safety 134: 51-58.
[2] Doostparast, M., et al. (2014). "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems." Reliability Engineering & System Safety 126: 98-106.
[3] Chang, C.-C. (2014). "Optimum preventive maintenance policies for systems subject to random working times, replacement, and minimal repair." Computers & Industrial Engineering 67: 185-194.
[4] Chen, M., et al. (2010). "Replacement and preventive maintenance models with random working times." IEICE transactions on fundamentals of electronics, communications and computer sciences 93(2): 500-507.
[5] Wan, J., et al. (2017). "A manufacturing big data solution for active preventive maintenance." IEEE Transactions on Industrial Informatics 13(4): 2039-2047.
[6] Sheu, S.-H., et al. (2015). "Optimal preventive maintenance and repair policies for multi-state systems." Reliability Engineering & System Safety 140: 78-87.
[7] Behzadirafi, S. and H. Salehfar (2015). "Preventive Maintenance Scheduling Based on Short Circuit and Overload Currents." IEEE Transactions on Smart Grid 6(4): 1740-1747.
[8] Cassady, C. R. and E. Kutanoglu (2005). "Integrating preventive maintenance planning and production scheduling for a single machine." IEEE Transactions on reliability 54(2): 304-309.
[9] Canfield, R. (1986). "Cost optimization of periodic preventive maintenance." IEEE Transactions on reliability 35(1): 78-81.