跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂玉菀
Yu-Wan Lu
論文名稱: 使用震源機制逆推台灣地區應力分區狀況
Using Focal Mechanism to Invert the Stress Fields in the Taiwan Region
指導教授: 李錫堤
Chyi-Tyi Lee
馬國鳳
Kuo-Fong Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 92
語文別: 中文
論文頁數: 97
中文關鍵詞: 應力分區應力震源機制台灣
外文關鍵詞: Taiwan, focal mechanism, stress
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究收集台灣地區震源機制解資料,進行大地應力逆推計算,企求劃分合理的應力均質區及探討各均質區的應力狀況。
    研究中蒐集品質較高的CMT法與波形逆推法所得的震源機制解為資料,分別利用Gephart逆推方法與Michael逆推方法求得各移動視窗的應力逆推結果,再依照各視窗所得結果進行均質區的圈劃,並加以適當的調整,以得到各個合理的應力均質區域。若兩種逆推方法所得差別較大,也使用Angelier逆推方法加以比較。
    進行移動視窗逆推分析時,將資料分為規模大於3者及規模大於4者兩組,分別進行分析及劃分應力均質區。結果發現,使用兩種資料分類,皆可將研究區域劃分為9-10個分區。由於資料量的大小差異,導致分區的範圍略有不同,但兩種分類所得的分區結果卻相近。各個分區細節皆有不同,但是大部分區域之最大主應力方位,皆符合菲律賓海板塊向西北擠壓歐亞板塊的方向。台東縱谷東側可以被劃分為一個完整的應力均質分區,而台灣西半部的最大主應力軸方位,由南較成東西向,越往北有順時針向北偏轉的效果產生。在宜蘭分區,因沖繩海槽的影響,其最大主應力軸呈現東北—西南走向的正斷層或橫移斷層的機制。


    The purpose of this study is to find out the stress condition in different
    homogenous stress zones in the Taiwan region, by method of stress
    inversion using focal mechanism data. Numerous focal mechanism data
    have been collected from various literatures. The methodology of stress
    inversion was the orientation of principal stress axes with the 95%
    confidence regions estimated by the Gephart method and Michael method. If
    there is a discrepancy between the results of the two methods, the Angelier
    method was used for comparison.
    Our study area includes the whole island and extends to 30 km offshore.
    The range of hypocenter depth is 0 to 30 km. High quality focal mechanism
    data obtained from the centroid moment tensor and waveform inversion
    algorithm within this zone were collected .
    Two dataset were retrieved from the focal mechanism database, group
    one is those with magnitude greater than 3 and group two greater than 4 for
    more consistent data. The Taiwan region was firstly divided into 9 or 10
    homogenous zones by adopting a criteria of misfit less than 6 degrees in the
    stress inversion scheme.
    The results in each homogenous area show that great majority of
    principle stress directions are consistent with the collision between the
    Philippine Sea Plate and the Eurasian Plate for the whole study zone. The
    eastern side of the Longitudinal Valley can be considered as a homogeneity
    of stress field. On the other hand, in Western Taiwan, the direction of most
    principal stress changes clockwise from E-W in the South to N in the North.
    In I-Lan, near the Okinawa Trough, transtensional faulting mechanism and
    more NE-WS maximum horizontal stress direction were found.

    中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目 Ⅵ 表目 Ⅷ 第一章 緒論 1 1.1 研究動機與目的 1 1.2 前人研究 1 1.2.1 應力逆推結果 1 1.2.2 資料合成 3 第二章 資料蒐集與處理 7 2.1 資料蒐集 7 2.2 資料處理 12 第三章 研究方法及流程 13 3.1 研究方法 13 3.1.1 應力逆推方法 13 3.1.2 可信度範圍 20 3.1.3 不同方法逆推結果比較 20 3.1.4 最大與最小水平應力的推求 21 3.2 研究流程 23 第四章 應力逆推結果 27 4.1 各網格應力狀況 27 4.1.1 使用全部資料 27 4.1.2 使用921地震為分界 31 4.2 大地應力分區結果 39 4.2.1 使用所有資料(規模大於3的地震事件) 39 4.2.2 規模大於4的地震事件 52 第五章 討論 58 5.1 各網格應力狀況與前人其他研究方法結果比較 58 5.2 各個應力均質分區所得逆推結果與前人研究比較 58 5.3 比較Gephart與Michael方法所得結果 59 第六章 結論與建議 61 6.1 結論 61 6.2 建議 62 參考文獻 63 附錄 70

    江準熙(1994)應用震源機制估計區域構造應變與應力之研究,國立台灣大學海洋研究所碩士論文,共102頁。
    吳相儀(2000)台灣地區中大型地震震源參數分析,國立中央大學地球物理研究所碩士論文,共119頁。
    吳偉民(1994)一九九三年十二月十六日嘉義大埔地震序列之探討,國立中央大學地球物理研究所碩士論文,共73頁。
    呂玉菀,李錫堤,馬國鳳(2004)使用震源機制逆推台灣地區應力分區狀況之初步研究,第十屆台灣地區地球物理學術研討會論文集, 85。
    李錫堤(1986)大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響,國立臺灣大學地質研究所博士論文,共202頁。
    李錫堤,葉永田,鄭世楠,郭鎧紋,鍾仁光(1992)利用初達P波及S波之極性推求震源機制極區域應力狀況(I),交通部中央氣象局研究報告,439,186 - 203。
    沈聖書(1996)由波形逆推地震震源機制解探討台灣東北外海隱沒與碰撞構造之特性,國立中央大學地球物理研究所碩士論文,共177頁。
    倪偉峰(2003)集集地震前後車籠埔斷層下盤地區地震活動之研究,國立成功大學地球科學研究所碩士論文,共115頁。
    陳榮裕(1995)一九九一年三月十二日佳里外海地震序列之探討,國立中央大學地球物理研究所碩士論文,共142頁。
    鄭世楠(1995)臺灣及其鄰近地區大地應力分佈的研究,國立中央大學地球物理研究所博士論文,共215頁。
    鄭錦桐(2002)台灣地區地震危害度的不確定性分析與參數拆解,國立中央大學地球物理研究所博士論文,共227頁。
    簡珮如(1997)台灣區域地震之地震矩張量逆推法,國立中央大學地球物理研究所碩士論文,共149頁。
    顏銀桐(2002)九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈,國立中央大學地球物理研究所碩士論文,共122頁。
    Abers, G.A. and Gephart, J.W. (2001) Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern California, J. Geophys. Res., 106(11), 26523-26540
    Angelier, J. (1979) Determination of the mean principal directions of stresses for a given fault population, Tectonophys., 56, 17-26
    Angelier, J. (1984) Tectonic Analysis of Fault Slip Data Sets, J. Geophys. Res, 89, 5835-5848
    Angelier, J. (1990) Inversion of field data in fault tectonics to obtain the regional stress-III. A new rapid direct inversion method by analytical mean, Geophys J. Int., 103, 363-376
    Angelier, J. (2002) Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV- A new method free of choice among nodal planes, Geophys. J. Int., 150, 588–609
    Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci., 1(1), 54-77
    Eva, E., Solarino, S., and. Eva, C (1997) Stress tensor orientation derived from fault plane solutions in the southwestern Alps, J. Geophys. Res., 102(4), 8171-8185
    Gephart, J.W. (1990a) Stress and the direction of slip on fault planes, Tectonics, 9(4), 845-858
    Gephart, J.W. (1990b) FMSI: A FORTRAN program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. And Geosci., 16(7), 953-989
    Gephart, J.W. and Forsyth, D.W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence, J. Geophys. Res., 89, 9305-9320
    Gillard, D. and Wyss, M. (1992) A Seismotectonic model for western Hawaii based on stress tensor inversion from fault plane solutions, J. Geophys. Res., 97(5), 6629-6641
    Gillard, D. and Wyss, M. (1995). Comparison of strain and stress tensor orientation: Application to Iran and southern California, J. Geophys. Res., 100(11), 22197-22213
    Hardebeck, J.L. and Hauksson, E. (2001) Stress orientations obtained from earthquake focal mechanisms: What are appropriate uncertainty estimates? Bull. Seismol. Soc. Am., 91(2), 250–262
    Horiuchi, S., Rocco, G., and Hasegawa, A. (1995) Discrimination of fault planes from auxiliary planes based on simultaneous determination of stress tensor and a large number of fault plane solutions, J. Geophys. Res., 100(5), 8327-8338
    Hu, J.-C. and Yu, S.-B. (2001)Active deformation of Taiwan from GPS measurements and numerical simulations , J. Geophys. Res., 106(2), 2265-2280
    Hu, J.-C., Angelier, J., Homberg, C., Lee, J.-C., Chu, H.-T. (2001) Three-dimensional modeling of the behavior of the oblique convergent boundary of southeast Taiwan: friction and strain partitioning, Tectonophys., 333, 261-276
    Jost, M. L., Herrmann, R. B. (1989) A Student''s guide to and review of moment tensors, Seism. Res. Lett., 60(2), 37-56
    Kao, H. and Angelier, J. (2001) Stress tensor inversion for the Chi-Chi earthquake sequence and its implications on regional Collision, Bull. Seismol. Soc. Am., 91(5), 1028–1040
    Kao, H. and Jian, P.-R. (1999), Source parameters of regional earthquakes in Taiwan: January- December, 1996, TAO, 10(3), 585-604
    Kao, H., Liu, Y.-H. and Jian, P.-R. (2001) Source parameters of regional earthquakes in Taiwan: January- December, 1997, TAO, 12(2), 431-439
    Kao, H., Liu, Y.-H., Chen, S.-C. and Liang W.-T. (2002a) Source parameters of regional earthquakes in Taiwan: January- December, 1998, TAO, 13(2), 197-204
    Kao, H., Liu, Y.-H., Liang, W-T. and Chen, W.-P. (2002b)Source parameters of regional earthquakes in Taiwan: 1999-2000 including the Chi-Chi earthquake sequence, TAO, 13(3), 279-298
    Kastrup, U., Zoback, M.L., Deichmann, N., Evans, K.F., Giardini, D., and Michael, A. J. (2004) Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions, J. Geophys. Res., 109, 1402-1424
    Kiratzi, A.A. (2002) Stress tensor inversions along the westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea, Geophys. J. Int., 151, 360–376
    Lee. C.-T. (1987) An improved method for estimation of tectonic stresses from earthquake fault plane solutions, Proc. Southeast Asian Geotechnical Conference, 7-67~7-80
    Lee. C.-T. (1995) Reconstruction of complete stress tensor from earthquake fault plane solutions and a rational stress constrain model, International Symposium on Active collision in Taiwan and the 3rd Colloquium of Sino-French Cooperative Program in earth sciences, Taipei, 177-183.
    Liang, B. and Wyss, M. (1991) Estimates of orientations of stress and strain tensors based on fault-plane solutions in the epicentral area of the great Hawaiian earthquake of 1868, Bull. Seismol. Soc. Am., 81(6), 2320-2334
    Liang, W.-T., Liu, Y.-H., and Kao, H. (2003) Source parameters of regional earthquakes in Taiwan: January- December, 2001, TAO, 14(2), 249-260
    Lu, Z. and Wyss, M. (1996) Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solution, J. Geophys. Res., 101(1), 803-816
    Lu, Z., Wyss, M. and Pulpan, H. (1997) Details of stress directions in the Alaska subduction zone from fault plane solutions, J. Geophys. Res., 102, 5385-5402
    Lund, B. and Slunga, R., Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Olfus in southwest Iceland, J. Geophys. Res., 104(7), 14947-14964
    McKenzie, D.P.(1969) The relation between fault plane solutions for earthquakes and the directions of the principal stresses, Bull. Seismol. Soc. Am., 59(2), 591-601
    Michael, A. J. (1984) Determination of Stress from slip data: faults and folds, J. Geophys. Res., 89, 11517-11526
    Michael, A. J. (1987a) Use of focal mechanisms to determine stress: A control study, J. Geophys. Res., 92, 357-369
    Michael, A. J. (1987b) Stress rotation during the Coalinga aftershock sequence, J. Geophys. Res., 92, 7963-7979
    Parker, R.L. and McNutt, M.K. (1980) Statistics for the one-norm misfit measure, J. Geophys. Res., 85(8), 4429-4430
    Prejean, S., Ellsworth, W., Zoback, M. and Waldhauser, F. (2002) Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions, J. Geophys. Res., 107(12), 2355-2374
    Rau, R.-J. and Wu, F. T. (1998) Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes, TAO, 9(4), 755-778
    Rau, R.J., Wu, F.T. and Shin, T.C. (1996) Regional network focal mechanism determination using 3D velocity model and SH/P amplitude ratio, Bull. Seismol. Soc. Am., 86(5), 1270-12831
    Sánchez, J.J., Wyss, M. and McNutt, S. R.(2004), Temporal-spatial variations of stress at Redoubt volcano, Alaska, inferred from inversion of fault plane solutions, J. Volcanol. Geotherm. Res., 130, 1-30
    Sbar, M. L. (1982) Delineation and interpretation of seismotectonic domains in western North America, J. Geophys. Res., 87, 3919-3928
    Wyss, M. and Lu, Z. (1995) Plate boundary segmentation by stress directions: southern San Andereas fault, California, Geophy. Res. Lett., 22(5), 547-550
    Wyss, M., Liang, B., Tanigawa, W.R., and Wu, X. (1992) Comparison of orientation of stress and strain tensors based on fault plane solutions in Kaoiki, Hawaii, J. Geophys. Res., 97, 4769-4790
    Yeh ,Y.-H., Barrier, E., Lin, C.-H. and Angelier, J. (1991)Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophys., 200, 267-280
    Yu, S.B., Chen, H.Y. and Kuo, L.C. (1997) Velocity field of GPS stations in the Taiwan area, Tectonophys., 274, 41-59
    Zoback, M. L. and Zoback, M. D. (1980) Faulting pattern in northern- central Nevada and strength of the Crust, J. Geophys. Res., 85, 275-284

    QR CODE
    :::