跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅英奕
Ying-Yi Lo
論文名稱: 宇宙射線和磁流動力系統之不穩定性
Instability of the Cosmic Rays and MHD Waves System
指導教授: 高仲明
Chung-Ming Ko
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
畢業學年度: 97
語文別: 英文
論文頁數: 140
中文關鍵詞: 不穩定性磁流動力宇宙射線
外文關鍵詞: instability, MHD, cosmic ray
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從歷史上,我們學到如三國時關公入千軍萬馬取上將首級如「探囊取物」、唐朝郭子儀「單騎退敵」,等等。這些人雖然為數不多,但卻扮演著關鍵性的角色。就如同自然界中,宇宙射線雖然在數量上很少,但卻有相當高的能量,而是否對宇宙有一定的影響?本論文以解析和數值模擬的方法,研究宇宙射線和電漿耦合的系統。
    第一章提出一自洽的方程組,作為我們的模型。它們相互影響,彼此襯托,以流體的方式描繪出宇宙射線,電漿,磁場和波的關係。於第二章利用解析的方法,討論此模型的穩定性。除了對參數空間在一般及極限情況下外,也對第一章模型的穩態解,廣泛而深入的探究模型在線性微擾方面的種種。之前的研究已知由熱電漿、宇宙射線及反向艾爾文波(Alfvén waves)構成的宇宙射線-電漿系統,顯示系統對由宇宙射線驅動的磁聲(magnetoacoustic)不穩定性非常敏感。加入正、反向的艾爾文波能量方程後,形成一個四流體-即熱電漿和宇宙射線外,再加入正、反向的艾爾文波。此時,二階費米(Fermi)效應自然就會出現在這系統中。這系統能量交換有三種:(一)、波的能量由宇宙射線透過自我激發的效應產生,(二)、波則藉由二階費米加速將能量傳送給宇宙射線,(三)、宇宙射線壓力梯度與波的壓力梯度則傳遞能量給電漿;反之亦然。第三章則省略模型中波的效應,利用 MOCCT 數值的方法(對法拉第方程,是先求出電場),模擬在星系盤面上三維的 Parker 不穩定性。對宇宙射線擴散項先用 Biconjugate gradient stabilized (BICGStab)方法,再以修正的Lax-Wendroff 方法求得宇宙射線能量密度。我們在解 MHD 方程上用修正的 Lax-Wendroff 方法,而在針對解宇宙射線擴散方程上選擇了隱性(implicit)的 BICGStab 方法。所以整體而言,我們是利用混合(hybrid)數值方法。在非線性演化期間,我們發現了一些特性。當擴散係數遞減時,宇宙射線的壓力分佈從原來的均勻分佈變成集中在磁泡的足點附近;同時,宇宙射線的壓力梯度迫使磁泡的頂端變得比較大。於是,向下掉落的物質被壓力梯度所阻,因此減緩了不穩定的成長。此外,在演化末期,三維模擬由於交換不穩定(interchange instability)的參與,其結果與二維非常不同。


    In histroy, there are only few people who have very high positive energy, however, they trun the table in critical time. Analoginally, the cosmic rays with the energy density is larger than plasma and magnetic field, it should participate in and influence the evolutin of astronomical enviroments, despite they are rare. This thesis investigates a self-consistent hydrodynamical model, which comprises magnetized thermal plasma, cosmic rays, forward and backward propagating Alfvén waves.
    Chapter 1 introduces our four-fluids model, begin from the cosmic ray transport equation, after frames trasformation and includes the relation between scattering frequencies and gwowth rate of Alfvén waves, intergal the momentum, then toward the hydrodynamics model.
    In chpater 2, we study the stability of our model and discuss basic linearly and analytically. Prior rsearch indicated there is magneto-acoustic instability driven by cosmic ray and backward Alfvén wave excited by streaming instability. As the result by adding the forward Alfvén wave, the second order Fermi acceleration effect arises in our four-fluid model (i.e. cosmic ray, plasma, forward and backward Alfvén waves), spontaneousness. This cosmic-ray plasma and waves system exchange energy among cosmic ray, plasma and waves via: (1) waves gain energy from self-excite effect by cosmic ray; (2) the second order Fermi effect transfer energy from waves to cosmic ray, and (3) The work done by pressure gradient of cosmic ray and waves lead the plasma gain energy from cosmic ray and waves,vice versa.
    In chapter 3, by using the MOCCT (Method of Characteristics/Constrained Transport) MHD code, we exploits a 3D numerical simulation, points on the Parker instability, but ingores the effects of self-gravity and waves. After sloved the diffusion term of cosmic ray energy equation via BICGStab (Biconjugate gradient stabilized) method, then obtained the convection trem and other MHD equations by modified Lax-Wendroff method. In general, we stduy 3D Parker instability including the cosmic ray effect with a hybrid numerical method.
    During the epoach of non-linear stage, we found some characteristics: the cosmic ray pressure distribution is rather nonuniform. Cosmic rays tend to accumulate near the footpoint of the magnetic loop, and the cosmic ray pressure gradient force toward the top of the loop becomes larger. The falling motion of matter is then impeded by the cosmic ray pressure gradient force, and the growth rate of the Parker instability decreases. For 3D case, at near the end of evolution, due to the interchange mode participate in the system, the results are very different between 3D and 2D.

    Chinese Abstract i Abstract iii Chinese Acknowledgments v Acknowledgments vii Contents ix 1 Model 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Scattering of Cosmic Rays . . . . . . . . . . . . . . . . 3 1.1.2 Streaming Instability . . . . . . . . . . . . . . . . . . . 5 1.2 The Cosmic Ray Transport Equation . . . . . . . . . . . . . . 5 1.2.1 Transform to The Original Frame of Reference . . . . . 7 1.2.2 Relation Between Scattering Frequencies and Growth Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Toward The Hydrodynamics . . . . . . . . . . . . . . . . . . . 11 1.3.1 Complete Set of Equations . . . . . . . . . . . . . . . . 13 1.4 Nonlinear Test Particle Picture . . . . . . . . . . . . . . . . . 15 1.5 Steady State Solution . . . . . . . . . . . . . . . . . . . . . . . 18 2 Instability Analysis of Cosmic Rays And Waves System 1 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 The Concept of Stability . . . . . . . . . . . . . . . . . 23 2.2 Methods to Study Instability . . . . . . . . . . . . . . . . . . . 26 2.2.1 Energy Principle . . . . . . . . . . . . . . . . . . . . . 27 2.2.2 Interchange Instability . . . . . . . . . . . . . . . . . . 29 2.2.3 Normal Mode Analysis . . . . . . . . . . . . . . . . . . 30 2.2.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.5 Generalized Hermite-Biehler theorem . . . . . . . . . . 32 2.2.6 Routh-Hurwitz Stability Criterion . . . . . . . . . . . . 33 2.2.7 Sylvester matrix . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Linear Stability Analysis on The Four- uid Model . . . . . . . 12 2.4 Results I { Special Case . . . . . . . . . . . . . . . . . . . . . 39 2.4.1 Nonlinear Test Particle Picture Case . . . . . . . . . . 39 2.4.2 Perpendicular perturbations (mu = 0) Case . . . . . . . 48 2.4.3 Unidirectional wave system (P+w0 = 0 or P-w0 = 0) . . . 49 2.4.4 Large cosmic ray pressure (Pc0 >> (P+w0 + P-w0)) . . . . . 50 2.4.5 Vanishing cosmic ray pressure (Pc0 ~ 0) . . . . . . . . 52 2.4.6 Large wavenumber (k lD) . . . . . . . . . . . . . . . 52 2.4.7 Vanishing wavenumber (~k ~ 0) . . . . . . . . . . . . . 53 2.5 Results II General cases . . . . . . . . . . . . . . . . . . . . 54 2.5.1 (e-; ec)-plane . . . . . . . . . . . . . . . . . . . . . . . 54 2.5.2 (e-; ~k)-plane. . . . . . . . . . . . . . . . . . . . . . . . 54 2.5.3 (e-; mu)-plane . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5.4 (mu; ~k)-plane . . . . . . . . . . . . . . . . . . . . . . . . 55 2.5.5 (mu; betaw)-plane . . . . . . . . . . . . . . . . . . . . . . . 55 2.5.6 ( betas; beta w)-plane . . . . . . . . . . . . . . . . . . . . . . 56 2.5.7 (~nug0; betaw)-plane . . . . . . . . . . . . . . . . . . . . . . 56 2.6 Results III { An Example . . . . . . . . . . . . . . . . . . . . 57 3 3D Simulation of Parker Instability with Cosmic Ray 65 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1.1 Lax-Wendroff Method . . . . . . . . . . . . . . . . . . 68 3.1.2 Time Splitting And BICGstab Method . . . . . . . . . 69 3.1.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . 73 3.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 76 3.3 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4 Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.1 kappa = 200 . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.2 kappa = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Summary 97 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 A Linearized Equations for System 107 B Coefficient for Polynomial 111 C Criteria for real roots of a quartic equation 115 D Lax-wendroff Metods 117 E BICGstab Method 119

    [1] Achterberg, A., Blandford, R. D., and Periwal, V. Two-Fluid
    Models Of Cosmic Ray Shock Acceleration. Astronomy and Astrophysics
    132 (1984), 97-104.
    [2] Aharonian, F. A.and Akhperjanian, A. G., Aye, K.,
    Bazer-Bachi, A. R., Beilicke, M., Benbow, W., Berge,
    D., Berghaus, P., Bernlohr, K., Bolz, O., Boisson, C.,
    Borgmeier, C., Breitling, F., Brown, A. M., Bussons Gordo,
    J., Chadwick, P. M., Chitnis, V. R., Chounet, L., Cornils, R.,
    Costamante, L., Degrange, B., Djannati-Ata, A., Drury,
    L. O., Ergin, T., Espigat, P., Feinstein, F., Fleury, P.,
    Fontaine, G., Funk, S., Gallant, Y. A., Giebels, B.,
    Gillessen, S., Goret, P., Guy, J., Hadjichristidis, C.,
    Hauser, M., Heinzelmann, G., Henri, G., Hermann, G., Hinton,
    J. A., Hofmann, W., Holleran, M., Horns, D., de Jager,
    O. C., Jung, I., Khelifi, B., Komin, N., Konopelko, A.,
    Latham, I. J., Le Gallou, R., Lemoine, M., Lemi ere, A.,
    Leroy, N., Lohse, T., Marcowith, A., Masterson, C., Mc-
    Comb, T. J. L., de Naurois, M., Nolan, S. J., Noutsos, A.,
    Orford, K. J., Osborne, J. L., Ouchrif, M., Panter, M., Pelletier,
    G., Pita, S., Pohl, M., Puhlhofer, G., Punch, M.,
    Raubenheimer, B. C., Raue, M., Raux, J., Rayner, S. M., Redondo,
    I., Reimer, A., Reimer, O., Ripken, J., Rivoal, M.,
    Rob, L., Rolland, L., Rowell, G., Sahakian, V., Sauge, L.,
    Schlenker, S., Schlickeiser, R., Schuster, C., Schwanke, U.,
    Siewert, M., Sol, H., Steenkamp, R., Stegmann, C., Tavernet,
    J.-P., Theoret, C. G., Tluczykont, M., van der Walt,
    D. J., Vasileiadis, G.and Vincent, P., Visser, B., Volk, H. J.,
    and Wagner, S. J. High-Energy Particle Acceleration In The Shell
    Of A Supernova Remnant. Nature 432 (2004), 75-77.
    [3] Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kusrud, R. M. An Energy Principle For Hydromagnetic Stability Problems.
    Proceedings of the Royal Society A 244 (1958), 17-40.
    [4] Bhattacharyya, S. P., Chapellat, H., and Keel, L. H. Robust
    Control: The Parametric Approach. Prentice Hall, 1995.
    [5] Dewar, R. L. Interaction between HydromagneticWaves And A Time-
    Dependent, Inhomogeneous Medium. Physics of Fluids 13 (1970), 2710-
    2720.
    [6] Dobbs, C. L., and Price, D. J. Magnetic Fields And The Dynamics
    Of Spiral Galaxies. Monthly Notices of the Royal Astronomical Society
    383 (2008), 497-512.
    [7] Faber, T. E. Fluid Mechanics For Physicisits. Cambridge University
    Press, 1997.
    [8] Ferdinand, F. An Inhomogeneous Eigenvalue Problem. Journal of
    Computational and Applied Mathmarics 167 (2004), 243-249.
    [9] Franco, J., Kim, J., Alfaro, E. J., and Hong, S. S. The Parker
    Instability In Three Dimensions: Corrugations And Superclouds Along
    The Carina-Sagittarius Arm. The Astrophysical Journal 570 (2002),
    647-655.
    [10] Fukui, Y., Yamamoto, Y., Fujishita, M., Kudo, M., Torii,
    K., Nozawa, S., Takahashi, K., Matsumoto, R., Machida, M.,
    Kawamura, A., Yonekura, Y., Mizuno, N., Onishi, T., and
    Mizuno, A. Molecular Loops In the Galactic Center: Evidence for
    Magnetic Flotation. Science 314 (2006), 106.
    [11] Gerard, L. G. S., and Diederik, R. BICGSTAB(L) For Linear
    Equations Involving Unsymmetric Matrices With Complex. Electronic
    Transactions on Numerical Analysis 1 (1993), 11-32.
    [12] Hanasz, M., and Lesch, H. The Dynamical Coupling Of Cosmic
    Rays And Magnetic Field In Galactic Disks. Astrophysics and Space
    Science 281 (2002), 289-292.
    [13] Heavens, A. F. Ecient Particle Acceleration In Shocks. Royal As-
    tronomical Society, Monthly Notices 210 (1984), 813-827.
    [14] Horbury, T., Forman, M., and Oughton, S. Spacecraft Observations
    Of Solar Wind Turbulence: An Overview. Plasma Physics and
    Controlled Fusion 47 (2005), B703-B717.
    [15] Hughes, D. W., and Cattaneo, F. A New Look At The Instability
    Of A Strati ed Horizontal Magnetic Field. Geophysical & Astrophysical
    Fluid Dynamics 39 (1987), 65-81.
    [16] Jiang, I. G., Chan, K. W., and Ko, C. M. Hydrodynamic Approach
    To Cosmic Ray Propagation. I. Nonlinear Test Particle Picture.
    Astronomy and Astrophysics 307 (1996), 903-914.
    [17] Jones, F. C., and Ellison, D. C. The Plasma Physics Of Shock
    Acceleration. Space Science Reviews 58 (1991), 259-346.
    [18] Jones, T. W., and Kang, H. Time-Dependent Evolution Of Cosmic-
    Ray-Mediated Shocks In The Two-Fluid Model. The Astrophysical Jour-
    nal 363 (1990), 499-514.
    [19] Jury, E. I. From J. J. Sylvester to Adolf Hurwitz: A History Review.
    In Stability Theory Hurwitz Centenary Conference Centro Stefano Fran-
    scini, Ascona (1995), R. Jeltsch and M. Mansour, Eds., pp. 53-65.
    [20] Kim, W., Ostriker, E. C., and Stone, J. M. Three-Dimensional
    Simulations Of Parker, Magneto-Jeans, and Swing Instabilities In Shearing
    Galactic Gas Disks. The Astrophysical Journal, Volume 581, Issue
    2, pp. 1080-1100 581 (2002), 1080-1100.
    [21] Ko, C. M. A Note on The Hydrodynamical Description of Cosmic Ray
    Propagation. Astronomy and Astrophysics 259 (1992), 377-381.
    [22] Ko, C. M. Cosmic-Ray-Modi ed Shocks. Advances in Space Research
    15 (1995), 149-158.
    [23] Ko, C. M. Hydrodynamic Approach To Cosmic Ray Propagation. II.
    Nonlinear Test Particle Picture In A Shocked Background. Astronomy
    and Astrophysics 340 (1998), 605-616.
    [24] Ko, C. M. Continuous So0lutions Of The Hydrodynamic Approach To
    Cosmic-Ray Propagation. Journal of Plasma Physics 65 (2001), 305-
    317.
    [25] Ko, C. M., and Jeng, A. T. Magnetohydrodynamics Instability
    Driven By Cosmic Rays. Journal of Plasma Physics 52 (1994), 23-42.
    [26] Kulsrud, R. M., and Cesarsky. The E ectiveness of Instabilities
    for The Con nement of High Energy Cosmic Rays in The Galactic Disk.
    Astrophysical Letters 8 (1971), 189.
    [27] Kulsrud, R. M., and Pearce, W. P. The E ect of Particle-wave
    Interactions on The Propagation of Cosmic Rays. The Astrophysical
    Journal 156 (1969), 445-469.
    [28] Kuwabara, T., and Ko, C. M. Parker-jeans instability of gaseous
    disks including the e ect of cosmic rays. The Astrophysical Journal 636
    (2006), 290-302.
    [29] Landau, L. D., and Lifshtiz, E. M. Fluid Mechanics. Pergamon
    Press, 1987. Translated from the Russion by J. B. Sykes and W. H.
    Reid.
    [30] Lindqusit, S. On the Stability of Magneto-Hydrostatic Fields. Physics
    Review 83 (1951), 307-311.
    [31] Lo, Y. Y., and Ko, C. M. Stability of A System with Cosmic Rays
    and Waves. Astronomy and Astrophysics, Volume 469 (2007), 829-837.
    [32] Longair, M. S. High Energy Astrophysics, second ed., vol. 2. Cambridge
    University Press, 1994.
    [33] Malkov, M. A. Analytic Solution for Nonlinear Shock Acceleration
    in the Bohm Limit. The Astrophysical Journal 485 (1997), 638-654.
    [34] Malkov, M. A. Bifurcation, E ciency, and the Role of Injection in
    Shock Acceleration with the Bohm Di usion. The Astrophysical Journal
    491 (1997), 584-595.
    [35] Marchuk, G. I. Method of Numerical Mathematics, vol. 2. Springer-
    Verlag, New York,Heidelberg, Berlin, 1975.
    [36] Matsumoto, T., Nakamura, F., and Hanawa, T. Gravitational
    instability of magnetized lamentary clouds. 2: Rotation. In In ESA,
    Fourth International Toki Conference on Plasma Physics and Controlled
    Nuclear Fusion (1993), pp. 349-352.
    [37] Morris, M. Galactic Prominences on the Rise. Science 314 (2006),
    70-71.
    [38] Ostrowski, M. Eciency of The Second-order Fermi Acceleration At
    Parallel Shock Wave. Astronomy and Astrophysics 283 (1994), 344-348.
    [39] Padmanabhan, T. Theoretical Astrophysics, vol. I: Astrophysical Processes.
    Cambridge university Press, 2000
    [40] Parker, E. N. The Dynamical State of the Interstellar Gas and Field.
    Astrophysical Journal 145 (1966), 811-833.
    [41] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and
    Flanney, B. P. Numerical Rrcipes in C, second ed. Press Syndicate
    of the University of Cambridge, 1006.
    [42] Priest, E. N. Solar Magnetohydrodynamics. D. Reidel Publishing
    Company, P.O. Box 17, 3300 AA Dordrecht, Holland, 1987.
    [43] Robert, R., and Rosier, C. Long Range Predictability of Atmospheric
    Flows. Nonlinear Processes in Geophysics 8 (2001), 55-67.
    [44] S., L. M., and Hong, S. S. ans Kim, J. Three-Dimensional Simulations
    of the Jens-Parker Instability. Journal of The Korean Astronomical
    Society 34 (2001), 285-287.
    [45] Shibata, K., Tajima, T., Matsumoto, R., Horiuchi, T.,
    Hanawa, T., Rosner, R., and Uchida, Y. Nonlinear Parker Instability
    of Isolated Magnetic Flux in A Plasma. The Astrophysical Journal
    338 (1989), 471-492.
    [46] Skilling, J. Cosmic Rays in The Galaxy: Convection or Di usion.
    The Astrophysical Journal 170 (1971), 265-273.
    [47] Skilling, J. Cosmic Ray Streaming. I - E ect of Alfven Waves on
    Particles. Royal Astronomical Society, Monthly Notices 172 (1975), 557-
    566.
    [48] Skilling, J. Cosmic Ray Streaming. III - Self-consistent Solutions.
    Royal Astronomical Society, Monthly Notices 173 (1975), 255-269.
    [49] Tanuma, S., Yokoyama, T., Kudoh, T., and Shibata, K. Magnetic
    Reconnection Triggered by the Parker Instability in the Galaxy:
    Two-dimensional Numerical Magnetohydrodynamic Simulations and
    Application to the Origin of X-Ray Gas in the Galactic Halo. The
    Astrophysical Journal 582 (2003), 215-229.
    [50] Webb, G. M., Zank, G. P., Kaghashvili, E. K., and
    Ratkiewicz, R. E. Magnetohydrodynamics waves in non-uniform
    ows I: A Variational Approach. J. Plasma Physics 71 (2005), 785-
    809.
    [51] Yan, H., and Lazarian, A. Cosmic-Ray Scattering and Streaming
    In Compressible Magnetohydrodynamic Turbulence. The Astrophysical
    Journal 614 (2004), 757-769.
    [52] Yang, L., and Xia, B. An Explicit Criterion to Determine The Number
    Of Roots In An Interval Of A Polynominal. Progress In Nature
    Science 10, 12 (2000), 897-910.

    QR CODE
    :::