| 研究生: |
林思婷 Szu-ting Lin |
|---|---|
| 論文名稱: | Numerical Investigation of Acoustic Structure Interaction Eigenvalue Problems |
| 指導教授: | 黃楓南 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 流固互制問題 、耦合 、阻尼 、有限元素法 、二次特徵值問題 |
| 外文關鍵詞: | acoustic-structure interaction, coupling, damping, finite element method, quadratic eigenvalue problem |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
日常生活中總是充斥著許多噪音,各種惱人的聲音不斷造成聽覺干擾,然而人們通常喜歡待在相對安靜的環境。如果在室內或是較為封閉的空間內,就能借助設有阻尼器並以彈性材質製成的牆或邊界來降低噪音。而這種空氣流體和固體結構的耦合系統及交互作用可以藉由流固互制問題的數學模型來模擬,應用有限元素法離散化之後,將其其轉換為等價的二次特徵值問題即可求得數值解。特徵值可反映出耦合系統的物理性質,其中我們選擇觀察在工業和科學領域中較被關注的低頻率特徵值。而後可經由數值模擬的結果來選擇消音材質或阻尼器的設置地點,以適應各種不同的情況及需求。
Noise is all around us. We are disturbed by these unpleasant sound all the time. However, most of the time people prefer to stay in a quieter environment. If people stay in enclosed space, we can keep the noise down by the aid of the boundaries which is made by elastic material, and furthermore set a damper on it to enhance the efficiency. The coupling and the interaction between fluid and structure can be simulated by a mathematical model called the acoustic structure interaction problem. It can be transform into a equivalent quadratic eigenvalue problem by applying the Galerkin finite element method. Eigenvalues reflects the behavior of the couple system, among these eigenvalue, we are interested in finding the low frequency eigenvalues which are concerned in the field of industrial and science. By the numerical simulation, the choices of material and the position of damper can be adjusted according to different situations or requirements.
[1] Thomas JR Hughes. The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis. Courier Dover Publications, 2012.
[2] William Thomson. Theory of Vibration with Applications. CRC Press, 1996.
[3] A Bermúdez, RG Durán, R Rodríguez, and J Solomin. Finite element analysis
of a quadratic eigenvalue problem arising in dissipative acoustics. SIAM Journal
on Numerical Analysis, 38(1):267–291, 2000.
[4] Alfredo Bermudez and Rodolfo Rodriguez. Modelling and numerical solution
of elastoacoustic vibrations with interface damping. International Journal for
Numerical Methods in Engineering, 46(10):1763–1779, 1999.
[5] Sheng-Hong Lai. Parallel Computation of Acoustic Eigenvalue Problems Using
a Polynomial Jacobi-Davidson Method. Master’s thesis, National Central
University, 2010.
[6] Tsung-Ming Huang, Feng-Nan Hwang, Sheng-Hong Lai, Weichung Wang, and
Zih-Hao Wei. A parallel polynomial Jacobi–Davidson approach for dissipative
acoustic eigenvalue problems. Computers & Fluids, 45(1):207–214, 2011.
[7] Yu-Fen Cheng. A Parallel Two-level Polynomial Jacobi-Davidson Algorithm
for Large Sparse Dissipative Acoustic Eigenvalue Problems. Master’s thesis,
National Central University, 2012.
[8] W Larbi, J-F Deü, and R Ohayon. A new finite element formulation for internal
acoustic problems with dissipative walls. International Journal for Numerical
Methods in Engineering, 68(3):381–399, 2006.
[9] Nicholas J. Higham, D. Steven Mackey, Françoise Tisseur, Seamus D. Garvey,
Mims Eprint, Nicholas J. Higham, D. Steven Mackey, Françoise Tisseur, and
Seamus D. Garvey. Scaling, sensitivity and stability in the numerical solution
of quadratic eigenvalue problems. 2006.
[10] P.E. Austrell. CALFEM: A Finite Element Toolbox : Version 3.4. Structural
Mechanics, LTH, 2004.
[11] Göran Sandberg, Per-Anders Wernberg, and Peter Davidsson. Fundamentals
of fluid-structure interaction. In Göran Sandberg and Roger Ohayon, editors,
Computational Aspects of Structural Acoustics and Vibration, CISM International
Centre for Mechanical Sciences, pages 23–101. Springer Vienna, 2009.
[12] Göran Sandberg and Roger Ohayon. Computational Aspects of Structural
Acoustics and Vibration. Springer, 2009.
[13] Hung-Yuan Fan, Wen-Wei Lin, and Paul Van Dooren. Normwise scaling of
second order polynomial matrices. SIAM Journal on Matrix Analysis and Applications,
26(1):252–256, 2004.
[14] Linda Kaufman. Some thoughts on the QZ algorithm for solving the generalized
eigenvalue problem. ACM Transactions on Mathematical Software, 3(1):65–75,
1977.