跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張桓
Huan Chang
論文名稱: 滅點幾何精化於單視影像模型重建
Single View Reconstruction Using Refined Vanishing Point Geometry
指導教授: 蔡富安
Fuan Tsai
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 193
中文關鍵詞: 滅點模型建置相機校正曲面建模視覺化
外文關鍵詞: vanishing points, model reconstruction, camera calibration, non-planar modelling, visualization
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述如何在單一視角的平面影像中,藉由透視投影所隱含之幾何資訊,量測與重建場景特徵物的三維模型。
    單影像量測所依據的是物空間三個彼此正交軸向的平行線,在影像上所交集的滅點,藉由滅點重新推論出成像時的物像關係與相機參數及姿態。
    此演算法具有低操作門檻、低成本與可靠精度等特性,並能針對已遭拆遷或破壞之歷史建物進行三維重建。

    本研究提出之演算流程,可在無先驗資訊,例如相機內外方位參數、透鏡畸變等環境下,在具有透視投影的照片或是圖畫中,以層疊霍式轉換自動化地萃取與分類通過三方向滅點的直線特徵。
    在初始滅點與估算特徵投影點的迭代過程中,利用投影點的誤差分析以O(1)計算複雜度的階層式微調機制修正滅點的位置,降低滅點幾何的隨機與系統性誤差。
    平面模型藉由滅點幾何即可推估特徵點的相對坐標,而針對三種常見的曲面結構:橢圓柱型、旋轉曲面、自由曲面,則進行不同策略性的三維幾何特徵參數重建。
    圓柱結構萃取其長短軸長度與起迄點位置,旋轉曲面尋找其中心軸與邊界曲線,自由曲面則決定取樣點數與建立邊界參數後,內插出曲面參數模型。

    本研究使用之測試例影像來源包含低誤差之電腦模擬輸出影像、近景攝影之非量測型相機與視訊擷取、真實畫作與數化歷史影像等。
    電腦模擬輸出影像在規則與非平面模型的建置誤差皆低於1\%。
    近景攝影建置之規則與非平面模型,相較於地面光達與航測立體對的模型誤差則各低於2\%與3\%。
    滅點微調機制能給重建後三維模型的均方根誤差由2\%降至0.6\%。
    建置成果與現地量測等資料進行量化驗証與視覺化之比較,同時也針對視角條件進行了誤差分析。
    此技術能應用於三維數位典藏、虛擬實境、數位城市、畫作三維視覺化與構圖分析等多方領域。


    This study developed algorithms to measure and reconstruct three-dimentional (3D) objects and scenes from a single-perspective image based on its geometric cues.
    Single view metrology relies on the 3 vanishing points that converge by parallel lines along 3 mutually orthogonal axes.
    Vanishing points can be used to estimate not only the camera pose but also internal parameters; thus, the 3D measurement of monocular vision can obtain a partial or complete 3D reconstruction of a scene.
    Advantages of the proposed method include low cost, reliable accuracy and flexibility, and the potential to reconstruct buildings and other architecture that are heavily damaged or even no longer exist.

    The presented algorithms employ uncalibrated images; therefore, no prior camera information is needed.
    Exterior and interior orientation parameters can be calibrated directly from the vanishing points.
    The proposed scheme began with line segment extraction and classification using cascade Hough transform from photographs or paintings with fine-perspective projection, and a fully automated base point searching algorithm is then used to locate the projection of feature points on the referenced plane.
    The systematic and random errors of the vanishing points and base points are minimized iteratively during the vanishing point refinement process based on the diversity of each projection group with an O(1) computational complexity.
    Three-dimensional coordinates of feature points are computed based on the single-view metrology.
    In addition, 3 types of non-planar structures including elliptic cylinder shapes, surfaces of revolution, and free-form surfaces are extracted separately for reconstruction based on their significant parameters.
    Finally, regular and curved models are merged based on their shared feature points.

    The output imagery of a computer-simulated model, video frame cut, consumer camera, and real paintings are used in this study to test the performance of the algorithms.
    The proposed vanishing point refinement process is able to reduce the differences between the images with and without lens distortion.
    Quantitative evaluations of the results compared with ground-based surveying and visualized comparison with raw images indicate that the algorithms can successfully extract 3D information and reconstruct 3D models of specific non-planar structures.
    Estimation errors of regular and non-planar parameters are less than 1\% compared to the ground truth using computer simulated imagery.
    For close range photograph, the average regular and non-planar errors are less than 2\% and 3\%, respectively, compared to the ground truth measured by ground-based LIDAR and stereo photo pairs.
    The proposed vanishing point refinement process improves the RMSE of the 3D model from about 2\% error to about 0.6\%.
    The accuracy of the proposed methods are related to the viewing angles based on the vanishing point geometry, and validation of viewing angle tolerance is also provided by given random errors during vanishing point calculation.

    Contents Page 摘要.................................................................................................... i Abstract.............................................................................................. iii Acknowledgements.............................................................................. v Contents .............................................................................................vii List of figures...................................................................................... xi List of tables.......................................................................................xvii List of acronyms .................................................................................xix 1. Introduction....................................................................... 3 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Research challenges, scope and assumptions . . . . . 5 1.3 Innovation and contribution . . . . . . . . . . . . . . 6 1.4 Dissertation outline . . . . . . . . . . . . . . . . . . 7 2. Related Work..................................................................... 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Image based model reconstruction . . . . . . . . . . 9 2.2.1 Stereo and multiple view vision . . . . . . . . . . . . 10 2.2.2 Singlw view metrology . . . . . . . . . . . . . . . . . 15 2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Pre-processing for SVR . . . . . . . . . . . . . . . . 27 2.3.1 Camera calibration . . . . . . . . . . . . . . . . . . . 27 2.3.2 Vanishing point estimation . . . . . . . . . . . . . . 33 2.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4 Representation of 3D models . . . . . . . . . . . . . 40 2.4.1 Parametric model . . . . . . . . . . . . . . . . . . . 40 2.4.2 Constructive solid geometry . . . . . . . . . . . . . . 40 2.4.3 Boundary representation . . . . . . . . . . . . . . . . 41 2.4.4 Sweeping and surface-of-revolution . . . . . . . . . . 42 2.4.5 Surface mesh model . . . . . . . . . . . . . . . . . . 42 2.4.6 Cell decomposition . . . . . . . . . . . . . . . . . . . 43 2.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Summary of chapter 2 . . . . . . . . . . . . . . . . . 47 3. Vanishing Point Geometry ................................................ 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Vanishing point and vanishing line . . . . . . . . . . 49 3.3 Vanishing points and camera calibration . . . . . . . 54 3.3.1 Vanishing points and collinearity condition equations 54 3.3.2 Vanishing points and perspective projection transformation . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3.3 Vanishing points and camera positioning . . . . . . . 62 3.3.4 Vanishing points and lens distortion . . . . . . . . . 63 3.4 Geometric cues and vanishing points . . . . . . . . . 64 3.4.1 Affine measurements between parallel planes . . . . . 66 3.5 Summary of chapter 3 . . . . . . . . . . . . . . . . . 71 4. Refinement of Single View Reconstruction........................ 73 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Image pre-processing . . . . . . . . . . . . . . . . . . 73 4.2.1 Feature lines detection . . . . . . . . . . . . . . . . . 75 4.2.2 Initial vanishing point localization . . . . . . . . . . 76 4.3 Vanishing point refinement . . . . . . . . . . . . . . 78 4.3.1 Feature point selection and base point estimation . . 78 4.3.2 Vanishing point fine-tuning . . . . . . . . . . . . . . 80 4.3.3 Measurement regularization . . . . . . . . . . . . . . 84 4.3.4 A test case of vanishing point estimation and refinement process . . . . . . . . . . . . . . . . . . . . . . 85 4.4 Non-planar reconstruction . . . . . . . . . . . . . . . 93 4.4.1 Cylindrical model . . . . . . . . . . . . . . . . . . . 93 4.4.2 Surface-of-revolution model . . . . . . . . . . . . . . 94 4.4.3 Free-form structure . . . . . . . . . . . . . . . . . . 95 4.5 Summary of chapter 4 . . . . . . . . . . . . . . . . . 96 5. Results and Discussions..................................................... 99 5.1 Computer simulated models . . . . . . . . . . . . . . 99 5.1.1 Computer simulated parametric model . . . . . . . . 99 5.1.2 Complex CAD model . . . . . . . . . . . . . . . . . 105 5.2 Close range photographs . . . . . . . . . . . . . . . . 111 5.2.1 Video frame cut . . . . . . . . . . . . . . . . . . . . 111 5.2.2 Oblique top-view photograph . . . . . . . . . . . . . 114 5.2.3 Historical photograph . . . . . . . . . . . . . . . . . 118 5.3 Paintings . . . . . . . . . . . . . . . . . . . . . . . . 122 5.4 Viewing angle analysis . . . . . . . . . . . . . . . . . 126 5.5 Summary of chapter 5 . . . . . . . . . . . . . . . . . 128 6. Conclusions........................................................................131 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . 131 6.1.1 Single view metrology . . . . . . . . . . . . . . . . . 131 6.1.2 Vanishing point estimation and refinement . . . . . . 132 6.1.3 Model reconstruction and error analysis . . . . . . . 132 6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . 134 6.2.1 Vanishing points and camera calibration . . . . . . . 134 6.2.2 Model reconstruction . . . . . . . . . . . . . . . . . 134 6.2.3 Level of automation . . . . . . . . . . . . . . . . . . 135 6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . 135 6.4 Possible applications . . . . . . . . . . . . . . . . . . 136 6.5 Suggestions and future works . . . . . . . . . . . . . 137 Bibliography .......................................................................................139 Curriculum Vitae................................................................................159

    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.,
    2012. Slic superpixels compared to state-of-the-art superpixel methods.
    IEEE transactions on pattern analysis and machine intelligence
    34 (11), 2274–2282.
    Aguilera, D., Lahoz, J. G., Codes, J. F., 2005. A new method for vanishing
    points detection in 3d reconstruction from a single view. Proceedings
    of ISPRS comission 2.
    Almansa, A., Desolneux, A., Vamech, S., 2003. Vanishing point detection
    without any a priori information. IEEE Transactions on Pattern
    Analysis and Machine Intelligence 25 (4), 502–507.
    Autodesk, 2016. Autodesk 123d.
    URL http://www.123dapp.com/
    Badler, N., 1974. Three-dimensional motion from two-dimensional picture
    sequences. In: Proceedings of the 2nd Int. Joint Conf. Pattern
    Recognition. pp. 157–161.
    Baillard, C., Schmid, C., Zisserman, A., Fitzgibbon, A. W., 1999. Automatic
    line matching and 3D reconstruction of buildings from multiple
    views. In: ISPRS Conference on Automatic Extraction of GIS Objects
    from Digital Imagery. pp. 69–80.
    Barinova, O., Konushin, V., Yakubenko, A., Lee, K., Lim, H., Konushin,
    A., 2008. Fast automatic single-view 3-d reconstruction of urban
    scenes. In: European Conference on Computer Vision. Springer, pp.
    100–113.
    Barnard, S. T., 1983. Interpreting perspective images. Artificial intelligence
    21 (4), 435–462.
    139
    Baumberg, A., 2016. 3d software object modeller (3dsom).
    URL http://www.3dsom.com/
    Bay, H., Tuytelaars, T., Van Gool, L., 2006. Surf: Speeded up robust
    features. In: Computer vision–ECCV 2006. Springer, pp. 404–417.
    Bazin, J.-C., Pollefeys, M., 2012. 3-line ransac for orthogonal vanishing
    point detection. In: 2012 IEEE/RSJ International Conference on
    Intelligent Robots and Systems. IEEE, pp. 4282–4287.
    Blackmore, D., Leu, M. C., Shih, F., 1994. Analysis and modelling of
    deformed swept volumes. Computer-Aided Design 26 (4), 315–326.
    Boulanger, K., Bouatouch, K., Pattanaik, S., 2006. Atip: A tool for 3d
    navigation inside a single image with automatic camera calibration.
    EG UK theory and practice of computer graphics 15.
    Bräuer-Burchardt, C., Kühmstedt, P., Notni, G., 2015. Calibration of
    stereo 3d scanners with minimal number of views using plane targets
    and vanishing points. In: International Conference on Computer Analysis
    of Images and Patterns. Springer, pp. 61–72.
    Brauer-Burchardt, C., Voss, K., 2000. Robust vanishing point determination
    in noisy images. In: Pattern Recognition, 2000. Proceedings.
    15th International Conference on. Vol. 1. IEEE, pp. 559–562.
    Byröd, M., Åström, K., 2010. Conjugate gradient bundle adjustment.
    In: European Conference on Computer Vision. Springer, pp. 114–127.
    Canny, J., 1986. A computational approach to edge detection. IEEE
    Transactions on pattern analysis and machine intelligence (6), 679–
    698.
    Cantoni, V., Lombardi, L., Porta, M., Sicard, N., 2001. Vanishing point
    detection: representation analysis and new approaches. In: Image
    Analysis and Processing, 2001. Proceedings. 11th International Conference
    on. IEEE, pp. 90–94.
    Caprile, B., Torre, V., 1990. Using vanishing points for camera calibration.
    International journal of computer vision 4 (2), 127–139.
    140
    Chang, H., Tsai, F., 2011. Single view reconstruction for specific curve
    structures. In: 32nd Asian Conference on Remote Sensing. pp. 232–
    240.
    Chang, H., Tsai, F., 2012. Reconstructing three-dimensional specific
    curve building models from a single perspective view image. International
    Archives of the Photogrammetry, Remote Sensing and Spatial
    Information Sciences 39, B6.
    Chen, Q., Wu, H., Wada, T., 2004. Camera calibration with two arbitrary
    coplanar circles. In: Proc. European Conf. Computer Vision.
    Inc, pp. 521–532.
    Chen, W., 2017. Sketchup 3d warehouse tantunny.
    URL 3dwarehouse.sketchup.com/user/
    0047218326419084816043122/TANTUNNY?nav=models
    Choi, J., Kim, W., Kong, H., Kim, C., 2011. Real-time vanishing point
    detection using the local dominant orientation signature. In: 3DTV
    Conference: The True Vision-Capture, Transmission and Display of
    3D Video (3DTV-CON), 2011. IEEE, pp. 1–4.
    Colombo, C., Com, D., Bimbo, A. D., 2006. Camera calibration with
    two arbitrary coaxial circles. In: In Proc. 9th European Conference on
    Computer Vision ECCV 2006. Springer, pp. 265–276.
    Colombo, C., Del Bimbo, A., Pernici, F., 2005. Metric 3d reconstruction
    and texture acquisition of surfaces of revolution from a single uncalibrated
    view. IEEE Transactions on Pattern Analysis and Machine
    Intelligence 27 (1), 99–114.
    Corral-Soto, E. R., Elder, J. H., 2014. Automatic single-view calibration
    and rectification from parallel planar curves. In: European Conference
    on Computer Vision. Springer, pp. 813–827.
    Criminisi, A., 1999. Accurate visual metrology from single and multiple
    uncalibrated images. Ph.D. thesis, University of Oxford.
    Criminisi, A., 2002. Single-view metrology: Algorithms and applica-
    141
    tions. In: Joint Pattern Recognition Symposium. Springer, pp. 224–
    239.
    Criminisi, A., 2012. Accurate visual metrology from single and multiple
    uncalibrated images. Springer Science & Business Media.
    Criminisi, A., Reid, I., Zisserman, A., 2000. Single view metrology. International
    Journal of Computer Vision 40 (2), 123–148.
    Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human
    detection. In: Computer Vision and Pattern Recognition, 2005. CVPR
    2005. IEEE Computer Society Conference on. Vol. 1. IEEE, pp. 886–
    893.
    Desolneux, A., Moisan, L., Morel, J.-M., 2001. Edge detection by
    helmholtz principle. Journal of Mathematical Imaging and Vision
    14 (3), 271–284.
    Devernay, F., Faugeras, O. D., 1995. Automatic calibration and removal
    of distortion from scenes of structured environments. In: SPIE’s 1995
    International Symposium on Optical Science, Engineering, and Instrumentation.
    International Society for Optics and Photonics, pp. 62–72.
    Díaz, E., Arguello, H., 2016. An algorithm to estimate building heights
    from google street-view imagery using single view metrology across a
    representational state transfer system. In: SPIE Commercial+ Scientific
    Sensing and Imaging. International Society for Optics and Photonics,
    pp. 98680A–98680A.
    Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F.,
    Csorba, M., 2001. A solution to the simultaneous localization and map
    building (slam) problem. IEEE Transactions on robotics and automation
    17 (3), 229–241.
    Duda, R. O., Hart, P. E., 1972. Use of the hough transformation to
    detect lines and curves in pictures. Communications of the ACM 15 (1),
    11–15.
    Engel, J., Schöps, T., Cremers, D., 2014. Lsd-slam: Large-scale di-
    142
    rect monocular slam. In: European Conference on Computer Vision.
    Springer, pp. 834–849.
    Eos Systems, I., 2016. Accurate and affordable 3d modeling - measuring
    - scanning.
    URL http://www.photomodeler.com/index.html
    Fangi, G., Gagliardini, G., Malinverni, E. S., 2002. Photointerpretation
    and small scale stereoplotting with digitally rectified photographs
    with geometrical constraints. International Archives of Photogrammetry,
    Remote Sensing and Spatial Information Sciences 34 (5/C7), 160–
    167.
    Faugeras, O., 1993. Three-dimensional computer vision: a geometric
    viewpoint. MIT press.
    Faugeras, O., 1995. Stratification of three-dimensional vision: projective,
    affine, and metric representations. JOSA A 12 (3), 465–484.
    Faugeras, O., Laveau, S., Robert, L., Csurka, G., Zeller, C., 1995. 3-d
    reconstruction of urban scenes from sequences of images. In: Automatic
    Extraction of Man-Made Objects from Aerial and Space Images.
    Springer, pp. 145–168.
    Faugeras, O. D., 1992. What can be seen in three dimensions with an
    uncalibrated stereo rig? In: European conference on computer vision.
    Springer, pp. 563–578.
    Faugeras, S. L. O., 2004. Oriented projective geometry for computer
    vision. InProc. ECCV 1064.
    Fremont, V., Chellali, R., 2002. Direct camera calibration using two
    concentric circles from a single view. In: International Conference on
    Artificial Reality and Telexistence. Citeseer, pp. 93–98.
    Furferi, R., Governi, L., Vanni, N., Volpe, Y., 2014. Tactile 3d bas-relief
    from single-point perspective paintings: a computer based method.
    Journal of Information & Computational Science 11 (16), 5667–5680.
    Furukawa, Y., Curless, B., Seitz, S. M., Szeliski, R., 2010. Towards
    internet-scale multi-view stereo. In: CVPR.
    143
    Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multiview
    stereopsis. Pattern Analysis and Machine Intelligence, IEEE Transactions
    on 32 (8), 1362–1376.
    Gamba, P., Mecocci, A., Salvatore, U., 1996. Vanishing point detection
    by a voting scheme. In: Image Processing, 1996. Proceedings., International
    Conference on. Vol. 1. IEEE, pp. 301–304.
    Garcia-Gago, J., Gomez-Lahoz, J., Rodríguez-Méndez, J., González-
    Aguilera, D., 2014. Historical single image-based modeling: The case
    of gobierna tower, zamora (spain). Remote Sensing 6 (2), 1085–1101.
    Gonzalez-Aguilera, D., Gomez-Lahoz, J., 2008. From 2d to 3d through
    modelling based on a single image. The Photogrammetric Record
    23 (122), 208–227.
    Gopi, S., et al., 2007. Advanced Surveying: Total Station, GIS and
    Remote Sensing. Pearson Education India.
    Gracie, G., 1968. Analytical photogrammetry applied to single terrestrial
    photograph mensuration. In: Proceedings of the XIth International
    Congress of Photogrammetry, Lausanne, Switzerland.
    Grammatikopoulos, L., Karras, G., Petsa, E., 2007. An automatic approach
    for camera calibration from vanishing points. ISPRS journal of
    photogrammetry and remote sensing 62 (1), 64–76.
    Gröger, G., Kolbe, T., Nagel, C., Häfele, K., 2012. Ogc city geography
    markup language (citygml) encoding standard v2. 0. OGC Doc (12-
    019).
    Grossmann, E., Ortin, D., Santos-Victor, J., 2002. Single and multi-view
    reconstruction of structured scenes. In: Proceedings of the Fifth Asian
    Conference on Computer Vision, Melbourne, Australia. pp. 93–104.
    Guillou, E., Meneveaux, D., Maisel, E., Bouatouch, K., 2000. Using
    vanishing points for camera calibration and coarse 3d reconstruction
    from a single image. The Visual Computer 16 (7), 396–410.
    Haggrén, H., 2002. Applications of projective transformation for stereo
    photogrammetry.
    144
    URL https://foto.aalto.fi/research/projects/Full_scale/
    Academy_11_2002.htm
    Haines, O., Calway, A., 2015. Recognising planes in a single image. IEEE
    transactions on pattern analysis and machine intelligence 37 (9), 1849–
    1861.
    Haralick, R. M., 1980. Using perspective transformations in scene analysis.
    Computer Graphics and Image Processing 13 (3), 191–221.
    Harris, C., Stephens, M., 1988. A combined corner and edge detector.
    In: Alvey vision conference. Vol. 15. Citeseer, p. 50.
    Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer
    vision. Cambridge university press.
    Hartley, R. I., 1992. Estimation of relative camera positions for uncalibrated
    cameras. In: European Conference on Computer Vision.
    Springer, pp. 579–587.
    Hartley, R. I., Sturm, P., 1997. Triangulation. Computer vision and
    image understanding 68 (2), 146–157.
    Hassner, T., Basri, R., 2006. Example based 3d reconstruction from
    single 2d images. In: 2006 Conference on Computer Vision and Pattern
    Recognition Workshop (CVPRW’06). IEEE, pp. 15–15.
    He, B., Li, Y., 2009. Camera calibration with lens distortion and from
    vanishing points. Optical Engineering 48 (1), 013603–013603.
    Heyden, A., Astrom, K., 1997. Euclidean reconstruction from image
    sequences with varying and unknown focal length and principal point.
    In: Computer Vision and Pattern Recognition, 1997. Proceedings.,
    1997 IEEE Computer Society Conference on. IEEE, pp. 438–443.
    Hoiem, D., Efros, A. A., Hebert, M., 2005. Automatic photo pop-up.
    ACM transactions on graphics (TOG) 24 (3), 577–584.
    Hong, W., 2004. On symmetry and multiple-view geometry: Structure,
    pose, and calibration from a single image. IJCV 60, 2004.
    145
    Horry, Y., Anjyo, K.-I., Arai, K., 1997. Tour into the picture: using
    a spidery mesh interface to make animation from a single image. In:
    Proceedings of the 24th annual conference on Computer graphics and
    interactive techniques. ACM Press/Addison-Wesley Publishing Co.,
    pp. 225–232.
    Hou, F., Qin, H., Qi, Y., 2016. Procedure-based component and architecture
    modeling from a single image. The Visual Computer 32 (2),
    151–166.
    Hough, P. V., Dec 1962. Method and means for recognizing complex
    patterns. US Patent 3,069,654.
    Ikeuchi, K., 2014. Computer vision: A reference guide. Springer Publishing
    Company, Incorporated.
    Intuition, S., 2017. Volume mesh generation by sweeping operations.
    URL http://www.visualfea.com/manual-normal/html/4-2-3.
    htm
    Jahromi, A. B., Sohn, G., 2016. Geometric context and orientation map
    combination for indoor corridor modeling using a single image. International
    Archives of the Photogrammetry, Remote Sensing & Spatial
    Information Sciences 41, 295–302.
    Ji, Q., Haralick, R. M., 1999. Error propagation for computer vision
    performance characterization. In: International Conference on Imaging
    Science, Systems, and Technology, Las Vegas, NV. Vol. 28. pp. 429–35.
    Jiang, G., Quan, L., 2005. Detection of concentric circles for camera
    calibration. In: Tenth IEEE International Conference on Computer
    Vision (ICCV’05) Volume 1. Vol. 1. IEEE, pp. 333–340.
    Kalantari, M., Jung, F., Guedon, J., 2009. Precise, automatic and fast
    method for vanishing point detection. The Photogrammetric Record
    24 (127), 246–263.
    Kanazawa, A., Jacobs, D. W., Chandraker, M., 2016. Warpnet: Weakly
    supervised matching for single-view reconstruction. arXiv preprint
    arXiv:1604.05592.
    146
    Kang, H. W., Pyo, S. H., Anjyo, K.-i., Shin, S. Y., 2001. Tour into the
    picture using a vanishing line and its extension to panoramic images.
    In: Computer Graphics Forum. Vol. 20. Wiley Online Library, pp.
    132–141.
    Kemp, M., et al., 1990. The Science of Art: Optical themes in western
    art from Brunelleschi to Seurat. Yale University Press New Haven.
    Kender, J. R., 1979. Shape from texture: An aggregation transform that
    maps a class of textures into surface orientation. In: Proceedings of
    the 6th international joint conference on Artificial intelligence-Volume
    1. Morgan Kaufmann Publishers Inc., pp. 475–480.
    Klein, G., Murray, D., 2007. Parallel tracking and mapping for small ar
    workspaces. In: Mixed and Augmented Reality, 2007. ISMAR 2007.
    6th IEEE and ACM International Symposium on. IEEE, pp. 225–234.
    Koenderink, J., van Doorn, A., 1991. Affine structure from motion. Journal
    of the Optical Society of America. A, Optics and image science
    8 (2), 377–385.
    Košecká, J., Zhang, W., 2002. Video compass. In: European conference
    on computer vision. Springer, pp. 476–490.
    Koutsoudis, A., Vidmar, B., Ioannakis, G., Arnaoutoglou, F., Pavlidis,
    G., Chamzas, C., 2014. Multi-image 3d reconstruction data evaluation.
    Journal of Cultural Heritage 15 (1), 73–79.
    Koutsourakis, P., Simon, L., Teboul, O., Tziritas, G., Paragios, N., 2009.
    Single view reconstruction using shape grammars for urban environments.
    In: 2009 IEEE 12th international conference on computer vision.
    IEEE, pp. 1795–1802.
    Kruppa, E., 1913. Zur Ermittlung eines Objektes aus zwei Perspektiven
    mit innerer Orientierung. Hölder.
    Kushal, A., Bansal, V., Banerjee, S., 2002. A simple method for interactive
    3d reconstruction, camera calibration from a single view. In:
    ICVGIP. Citeseer.
    147
    Lee, D. C., Hebert, M., Kanade, T., 2009. Geometric reasoning for single
    image structure recovery. In: Computer Vision and Pattern Recognition,
    2009. CVPR 2009. IEEE Conference on. IEEE, pp. 2136–2143.
    Leonard, J. J., Durrant-Whyte, H. F., 1991. Simultaneous map building
    and localization for an autonomous mobile robot. In: Intelligent
    Robots and Systems’ 91.’Intelligence for Mechanical Systems, Proceedings
    IROS’91. IEEE/RSJ International Workshop on. Ieee, pp. 1442–
    1447.
    Li, B., Peng, K., Ying, X., Zha, H., 2010. Simultaneous vanishing point
    detection and camera calibration from single images. In: International
    Symposium on Visual Computing. Springer, pp. 151–160.
    Liang, D., Wang, X., 2008. Planar visual metrology using partitionbased
    camera calibration. In: Robotics, Automation and Mechatronics,
    2008 IEEE Conference on. IEEE, pp. 205–209.
    Liebowitz, D., Criminisi, A., Zisserman, A., 1999. Creating architectural
    models from images. In: Computer Graphics Forum. Vol. 18. Wiley
    Online Library, pp. 39–50.
    Liebowitz, D., Zisserman, A., 1998. Metric rectification for perspective
    images of planes. In: Computer Vision and Pattern Recognition, 1998.
    Proceedings. 1998 IEEE Computer Society Conference on. IEEE, pp.
    482–488.
    Liu, M., Guo, Y., Wang, J., 2017. Indoor scene modeling from a single
    image using normal inference and edge features. The Visual Computer,
    1–14.
    Lloyd, R., McCloskey, S., 2014. Recognition of 3d package shapes for single
    camera metrology. In: Applications of Computer Vision (WACV),
    2014 IEEE Winter Conference on. IEEE, pp. 99–106.
    Longuet-Higgins, H. C., 1987. A computer algorithm for reconstructing
    a scene from two projections. Readings in Computer Vision: Issues,
    Problems, Principles, and Paradigms, MA Fischler and O. Firschein,
    eds, 61–62.
    148
    Lowe, D. G., 1999. Object recognition from local scale-invariant features.
    In: Computer vision, 1999. The proceedings of the seventh IEEE international
    conference on. Vol. 2. Ieee, pp. 1150–1157.
    Luong, Q.-T., 1992. Matrice fondamentale et calibration visuelle sur
    l’environnement. vers une plus grande autonomie des système robotiques.
    Ph.D. thesis, Université Paris Sud-Paris XI.
    Luong, Q.-T., Faugeras, O. D., 1996. The fundamental matrix: Theory,
    algorithms, and stability analysis. International journal of computer
    vision 17 (1), 43–75.
    Lutton, E., Maitre, H., Lopez-Krahe, J., 1994. Contribution to the determination
    of vanishing points using hough transform. IEEE transactions
    on pattern analysis and machine intelligence 16 (4), 430–438.
    Magee, M., Aggarwal, J., 1984. Determining vanishing points from
    perspective images. Computer Vision, Graphics, and Image Processing
    26 (2), 256 – 267.
    URL http://www.sciencedirect.com/science/article/pii/
    0734189X84901889
    Malik, J., Rosenholtz, R., 1997. Computing local surface orientation
    and shape from texture for curved surfaces. International journal of
    computer vision 23 (2), 149–168.
    Martyushev, E., 2011. An algorithmic solution to the five-point pose
    problem based on the cayley representation of rotations. arXiv preprint
    arXiv:1105.3828.
    Matessi, A., Lombardi, L., 1999. Vanishing point detection in the hough
    transform space. In: European Conference on Parallel Processing.
    Springer, pp. 987–994.
    Maybank, S. J., Faugeras, O. D., 1992. A theory of self-calibration of a
    moving camera. International Journal of Computer Vision 8 (2), 123–
    151.
    McGlone, J. C., Shufelt, J. A., 1994. Projective and object space geometry
    for monocular building extraction. In: Computer Vision and
    149
    Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer
    Society Conference on. IEEE, pp. 54–61.
    McLean, G., Kotturi, D., 1995. Vanishing point detection by line clustering.
    IEEE Transactions on pattern analysis and machine intelligence
    17 (11), 1090–1095.
    Microsoft, 2016. Experience the new photosynth 3d.
    URL https://photosynth.net/default.aspx
    Middlemiss, R. R., Marks, J. L., Smart, J. R., 1968. Analytic geometry.
    McGraw-Hill Companies.
    Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local
    descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions
    on 27 (10), 1615–1630.
    Miyagawa, I., Arai, H., Koike, H., 2010. Simple camera calibration from
    a single image using five points on two orthogonal 1-d objects. IEEE
    Transactions on Image Processing 19 (6), 1528–1538.
    Moons, T., Van Gool, L., Van Diest, M., Pauwels, E., 1993. Affine reconstruction
    from perspective image pairs obtained by a translating
    camera. In: Joint European-US Workshop on Applications of Invariance
    in Computer Vision. Springer, pp. 297–316.
    Mur-Artal, R., Montiel, J., Tardós, J. D., 2015. Orb-slam: a versatile
    and accurate monocular slam system. IEEE Transactions on Robotics
    31 (5), 1147–1163.
    Neves, J. C., Moreno, J. C., Barra, S., Proença, H., 2015. A calibration
    algorithm for multi-camera visual surveillance systems based on singleview
    metrology. In: Iberian Conference on Pattern Recognition and
    Image Analysis. Springer, pp. 552–559.
    Nistér, D., 2004. An efficient solution to the five-point relative pose problem.
    IEEE transactions on pattern analysis and machine intelligence
    26 (6), 756–770.
    Nistér, D., Naroditsky, O., Bergen, J., 2004. Visual odometry. In: Computer
    Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
    150
    of the 2004 IEEE Computer Society Conference on. Vol. 1. IEEE, pp.
    I–652.
    Padeleris, P., 2004. jsvr project.
    URL svr.sourceforge.net/index.php
    Park, J., 2007. Quaternion-based camera calibration and 3d scene reconstruction.
    In: Computer Graphics, Imaging and Visualisation (CGIV
    2007).
    Philip, J., 1998. Critical point configurations of the 5-, 6-, 7-, and 8-
    point algorithms for relative orientation. Department of Mathematics,
    Royal Institute of Technology Stockholm, Sweden.
    Phillips, C. J., Danillidis, K., 2016. Absolute pose and structure from
    motion for surfaces of revolution: minimal problems using apparent
    contours. In: 3D Vision (3DV), 2016 Fourth International Conference
    on. IEEE, pp. 221–229.
    Phillips, C. J., Lecce, M., Davis, C., Daniilidis, K., 2015. Grasping surfaces
    of revolution: Simultaneous pose and shape recovery from two
    views. In: Robotics and Automation (ICRA), 2015 IEEE International
    Conference on. IEEE, pp. 1352–1359.
    Photometrix, 2016. iwitness.
    URL http://www.photometrix.com.au/
    Pollefeys, M., Koch, R., Van Gool, L., 1999. Self-calibration and metric
    reconstruction inspite of varying and unknown intrinsic camera parameters.
    International Journal of Computer Vision 32 (1), 7–25.
    Prasad, M., Fitzgibbon, A., 2006. Single view reconstruction of curved
    surfaces. In: 2006 IEEE Computer Society Conference on Computer
    Vision and Pattern Recognition (CVPR’06). Vol. 2. IEEE, pp. 1345–
    1354.
    Requicha, A. G., 1980. Representations for rigid solids: Theory, methods,
    and systems. ACM Computing Surveys (CSUR) 12 (4), 437–464.
    151
    Rosten, E., Porter, R., Drummond, T., 2010. Faster and better: A
    machine learning approach to corner detection. Pattern Analysis and
    Machine Intelligence, IEEE Transactions on 32 (1), 105–119.
    Rother, C., 2002. A new approach to vanishing point detection in architectural
    environments. Image and Vision Computing 20 (9), 647–655.
    Roy, U., Xu, Y., 1998. 3-d object decomposition with extended octree
    model and its application in geometric simulation of nc machining.
    Robotics and Computer-Integrated Manufacturing 14 (4), 317–327.
    Sanpaolesi, P., 1962. Brunelleschi. G. Barbèra Florence.
    Saxena, A., Chung, S. H., Ng, A. Y., 2008. 3-d depth reconstruction from
    a single still image. International journal of computer vision 76 (1), 53–
    69.
    Saxena, A., Sun, M., Ng, A. Y., 2009. Make3d: Learning 3d scene structure
    from a single still image. IEEE transactions on pattern analysis
    and machine intelligence 31 (5), 824–840.
    Schaffalitzky, F., Zisserman, A., 2000. Planar grouping for automatic
    detection of vanishing lines and points. Image and Vision Computing
    18 (9), 647–658.
    Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R., 2006.
    A comparison and evaluation of multi-view stereo reconstruction algorithms.
    In: Computer vision and pattern recognition, 2006 IEEE
    Computer Society Conference on. Vol. 1. IEEE, pp. 519–528.
    Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R., 2016.
    Multi-view stereo evaluation web page.
    URL http://vision.middlebury.edu/mview/
    Shang, Y., Yu, Q., Zhang, X., 2004. Analytical method for camera calibration
    from a single image with four coplanar control lines. Applied
    optics 43 (28), 5364–5369.
    Shapiro, V., 2002. Solid modeling. Handbook of computer aided geometric
    design 20, 473–518.
    152
    Shashua, A., Navab, N., 1996. Relative affine structure: Canonical model
    for 3d from 2d geometry and applications. IEEE Transactions on Pattern
    Analysis and Machine Intelligence 18 (9), 873–883.
    Shi, J., Tomasi, C., 1994. Good features to track. In: Computer Vision
    and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
    Computer Society Conference on. IEEE, pp. 593–600.
    Shufelt, J. A., 1999. Performance evaluation and analysis of vanishing
    point detection techniques. IEEE Transactions on Pattern Analysis
    and Machine Intelligence 21 (3), 282–288.
    Shum, H.-Y., Szeliski, R., Baker, S., Han, M., Anandan, P., 1998. Interactive
    3d modeling from multiple images using scene regularities. In:
    European Workshop on 3D Structure from Multiple Images of Large-
    Scale Environments. Springer, pp. 236–252.
    Smith, C., 2006. On vertex-vertex systems and their use in geometric and
    biological modelling. Ph.D. thesis, Calgary, Alta., Canada, Canada,
    aAINR19574.
    Smith, S. M., Brady, J. M., 1995. Susan - a new approach to low level
    image processing. International Journal of Computer Vision 23, 45–78.
    Snavely, N., Seitz, S. M., Szeliski, R., 2006. Photo tourism: Exploring
    photo collections in 3d. In: SIGGRAPH Conference Proceedings. ACM
    Press, New York, NY, USA, pp. 835–846.
    Spetsakis, M. E., Aloimonos, J. Y., 1990. Structure from motion using
    line correspondences. International Journal of Computer Vision 4 (3),
    171–183.
    Sturm, P., 2011. A historical survey of geometric computer vision. In:
    Computer Analysis of Images and Patterns. Springer, pp. 1–8.
    Sturm, P., Maybank, S., 1999a. A method for interactive 3d reconstruction
    of piecewise planar objects from single images. In: The 10th
    British machine vision conference (BMVC’99). The British Machine
    Vision Association (BMVA), pp. 265–274.
    153
    Sturm, P., Ramalingam, S., 2004. A generic concept for camera calibration.
    In: European Conference on Computer Vision. Springer, pp.
    1–13.
    Sturm, P. F., Maybank, S. J., 1999b. On plane-based camera calibration:
    A general algorithm, singularities, applications. In: Computer Vision
    and Pattern Recognition, 1999. IEEE Computer Society Conference
    on. Vol. 1. IEEE.
    Sweeney, C., 2016. Theia vision library.
    URL http://www.theia-sfm.org/sfm.html
    Séquin, C. H., 2006. Representations for solid modeling.
    URL https://people.eecs.berkeley.edu/~sequin/CS285/
    LECT06/L7.htm
    Tardif, J.-P., 2009. Non-iterative approach for fast and accurate vanishing
    point detection. In: 2009 IEEE 12th International Conference on
    Computer Vision. IEEE, pp. 1250–1257.
    Taylor, B., 1992. New principles of linear perspective. In: Brook Taylor’s
    Work on Linear Perspective. Springer, pp. 145–247.
    Tebaldini, S., Marcon, M., Sarti, A., Tubaro, S., 2008. Uncalibrated view
    synthesis from relative affine structure based on planes parallelism. In:
    2008 15th IEEE International Conference on Image Processing. IEEE,
    pp. 317–320.
    Termes, R., 1998. New perspective systems: Seeing the total picture.
    Terzopoulos, D., Witkin, A., Kass, M., 1988. Symmetry-seeking models
    and 3d object reconstruction. International Journal of Computer
    Vision 1 (3), 211–221.
    Trimble, 2017. Trimble sketchup.
    URL www.sketchup.com
    Tsai, F., Chang, H., 2013. Detection of vanishing points using hough
    transform for single view 3d reconstruction. In: 34th Asian Conference
    on Remote Sensing. Vol. 2. pp. 1182–1189.
    154
    Tsai, R., 1987. A versatile camera calibration technique for highaccuracy
    3d machine vision metrology using off-the-shelf tv cameras
    and lenses. IEEE Journal on Robotics and Automation 3 (4), 323–344.
    Tsai, Fuan, T. T. C. H. C. L., Chen, C., 2013. Three dimensional digital
    building modeling for multiple level of detail. Journal of Photogrammetry
    and Remote Sensing (Published by CSPRS, in Chinese) 17 (4),
    267–285.
    Tuytelaars, T., Proesmans, M., Van Gool, L., 1997. The cascaded
    hough transform as support for grouping and finding vanishing points
    and lines. In: International Workshop on Algebraic Frames for the
    Perception-Action Cycle. Springer, pp. 278–289.
    Tuytelaars, T., Van Gool, L., Proesmans, M., Moons, T., 1998. The
    cascaded hough transform as an aid in aerial image interpretation. In:
    Computer Vision, 1998. Sixth International Conference on. IEEE, pp.
    67–72.
    Ullman, S., 1979. The interpretation of structure from motion. Proceedings
    of the Royal Society of London B: Biological Sciences 203 (1153),
    405–426.
    Van den Heuvel, F. A., 1998. 3d reconstruction from a single image
    using geometric constraints. ISPRS Journal of Photogrammetry and
    Remote Sensing 53 (6), 354–368.
    Van Den Heuvel, F. A., 1998. Vanishing point detection for architectural
    photogrammetry. International archives of photogrammetry and
    remote sensing 32, 652–659.
    Verykokou, S., Ioannidis, C., 2016. Exterior orientation estimation of
    oblique aerial imagery using vanishing points. ISPRS-International
    Archives of the Photogrammetry, Remote Sensing and Spatial Information
    Sciences, 123–130.
    Volpe, Y., Furferi, R., Governi, L., Tennirelli, G., 2014. Computer-based
    methodologies for semi-automatic 3d model generation from paintings.
    International Journal of Computer Aided Engineering and Technology
    6 (1), 88–112.
    155
    Vouzounaras, G., Daras, P., Strintzis, M. G., 2014. Automatic generation
    of 3d outdoor and indoor building scenes from a single image.
    Multimedia Tools and Applications 70 (1), 361–378.
    Wade, N. J., 2003. The chimenti controversy. Perception 32 (2), 185–200.
    Wang, G., Tsui, H.-T., Hu, Z., Wu, F., 2005. Camera calibration and 3d
    reconstruction from a single view based on scene constraints. Image
    and Vision Computing 23 (3), 311–323.
    Wang, L.-L., Tsai, W.-H., 1990. Computing camera parameters using
    vanishing-line information from a rectangular parallelepiped. Machine
    Vision and Applications 3 (3), 129–141.
    Wang, S., Fidler, S., Urtasun, R., 2015. Lost shopping! monocular localization
    in large indoor spaces. In: Proceedings of the IEEE International
    Conference on Computer Vision. pp. 2695–2703.
    Weng, J., Ahuja, N., Huang, T. S., 1993. Optimal motion and structure
    estimation. IEEE Transactions on pattern analysis and machine
    intelligence 15 (9), 864–884.
    Wilczkowiak, M., Boyer, E., Sturm, P., 2001. Camera calibration and
    3d reconstruction from single images using parallelepipeds. In: Computer
    Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International
    Conference on. Vol. 1. IEEE, pp. 142–148.
    Wilczkowiak, M., Sturm, P., Boyer, E., 2005. Using geometric constraints
    through parallelepipeds for calibration and 3d modeling. IEEE
    transactions on pattern analysis and machine intelligence 27 (2), 194–
    207.
    Wildenauer, H., Hanbury, A., June 2012. Robust camera self-calibration
    from monocular images of manhattan worlds. In: Computer Vision and
    Pattern Recognition (CVPR), 2012 IEEE Conference on. pp. 2831–
    2838.
    Wildenauer, H., Vincze, M., 2007. Vanishing point detection in complex
    man-made worlds. In: Image Analysis and Processing, 2007. ICIAP
    2007. 14th International Conference on. IEEE, pp. 615–622.
    156
    Wolf, P. R., Dewitt, B. A., 2000. Elements of Photogrammetry: with
    applications in GIS. Vol. 3. McGraw-Hill New York.
    Wrobel, B. P., 2001. Minimum solutions for orientation. In: Calibration
    and orientation of cameras in computer vision. Springer, pp. 7–62.
    Wu, C., 2013. Towards linear-time incremental structure from motion.
    In: 2013 International Conference on 3D Vision-3DV 2013. IEEE, pp.
    127–134.
    Wu, C., 2016. Visualsfm : A visual structure from motion system.
    URL http://ccwu.me/vsfm/
    Wu, C., Frahm, J.-M., Pollefeys, M., 2011. Repetition-based dense
    single-view reconstruction. In: Computer Vision and Pattern Recognition
    (CVPR), 2011 IEEE Conference on. IEEE, pp. 3113–3120.
    Wu, Q., Shao, T.-C., Chen, T., 2007. Robust self-calibration from single
    image using ransac. In: International Symposium on Visual Computing.
    Springer, pp. 230–237.
    Wu, T.-P., Sun, J., Tang, C.-K., Shum, H.-Y., 2008. Interactive normal
    reconstruction from a single image. In: ACM Transactions on Graphics
    (TOG). Vol. 27. ACM, p. 119.
    Xu, X., 2009. Integrating advanced computer-aided design, manufacturing,
    and numerical control: principles and implementations. Information
    Science Reference Hershey.
    Yu, C., 2017. Single view 3d reconstruction and parsing using geometric
    commonsense for scene understanding.
    Zhai, M., Workman, S., Jacobs, N., 2016. Detecting vanishing points
    using global image context in a non-manhattan world. In: Proceedings
    of the IEEE Conference on Computer Vision and Pattern Recognition.
    pp. 5657–5665.
    Zhang, L., Dugas-Phocion, G., Samson, J.-S., Seitz, S. M., 2002. Singleview
    modelling of free-form scenes. The Journal of Visualization and
    Computer Animation 13 (4), 225–235.
    157
    Zhang, L., Lu, H., Hu, X., Koch, R., 2016. Vanishing point estimation
    and line classification in a manhattan world with a unifying camera
    model. International Journal of Computer Vision 117 (2), 111.
    Zhang, Z., 1998. Understanding the relationship between the optimization
    criteria in two-view motion analysis. In: Computer Vision, 1998.
    Sixth International Conference on. IEEE, pp. 772–777.
    Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE
    Transactions on pattern analysis and machine intelligence 22 (11),
    1330–1334.
    Zhang, Z., Hanson, A. R., 1996. 3d reconstruction based on homography
    mapping. Proc. ARPA96, 1007–1012.
    Zhang, Z., Luong, Q.-T., Faugeras, O., 1996. Motion of an uncalibrated
    stereo rig: self-calibration and metric reconstruction. Robotics and
    Automation, IEEE Transactions On 12 (1), 103–113.
    Zhang, Z., Xu, G., 1998. A unified theory of uncalibrated stereo for both
    perspective and affine cameras. Journal of Mathematical Imaging and
    Vision 9 (3), 213–229.
    Zhao, Y.-X., Tai, H.-P., Fang, S.-J., Chou, C.-H., 2012. A new validity
    measure and fuzzy clustering algorithm for vanishing-point detection.
    In: Automatic Control and Artificial Intelligence (ACAI 2012), International
    Conference on. IET, pp. 195–198.
    Zhou, F., Cui, Y., Gao, H., Wang, Y., 2013. Line-based camera calibration
    with lens distortion correction from a single image. Optics and
    lasers in Engineering 51 (12), 1332–1343.
    Zisserman, A., Beardsley, P. A., Reid, I. D., 1995. Metric calibration of
    a stereo rig. In: Representation of Visual Scenes, 1995.(In Conjuction
    with ICCV’95), Proceedings IEEE Workshop on. IEEE, pp. 93–100.

    QR CODE
    :::