| 研究生: |
錢均亮 Chun-Liang Chien |
|---|---|
| 論文名稱: |
創新色彩空間的研究與應用 The Research and Application on Innovative Color Spaces |
| 指導教授: |
曾定章
Din-Chang Tseng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 彩色影像強化 、eHSI色彩模型 、iHSV色彩模型 、雲層去除 、多時段衛星影像 |
| 外文關鍵詞: | color image enhancement, exact HSI color model, improved HSV color model, cloud removal, multi-temporal satellite images |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在高品質的彩色影像強化中,強化亮度或飽和度的同時,保持色調不變是很重要的,因此符合感官的色彩模型,像是HSI,HSL以及HSV等等,常被拿來使用。HSI 是一個常用的色彩模型,有許多色彩的應用都是以這個模型為基礎,無論如何,在HSI色彩空間修改亮度與飽和度之後,再從HSI色彩模型轉換回到RGB色彩模型時,常常造成跑出色域 (out-of-gamut) 的問題,除此之外,不論域中最大的飽和度範圍為何,像素的飽和度總是根據亮度的增加而遞增,亮度的減少或遞減。
HSV (Hue-Saturation-Value) 色彩模型在彩色影像強化與影像分割很常用到,但是在HSV色彩空間,同一亮度值所組成的平面,是平行於RGB方塊屋頂,環繞白色的三個平面,該平面的面積會隨著亮度值的遞增而擴增,因此影像的亮度直方統計圖會偏向集中在高亮度值的區域,因為亮度越高統計面積越大,這樣會導致色調和亮度很接近但是飽和度有明顯差異的兩個像素,在亮度強化之後,像是histogram equalization或是histogram stretching,會被大大的分開。
在這篇論文,我提出了一個從RGB到HSI色彩轉換的修正公式,稱為eHSI色彩模型,用來解決彩色影像強化中out-of-gamut的問題,並且讓像素的飽和度,可以根據最大飽和度的範圍自動適應性的調整,也就是像素的飽和度可以根據最大可擴充的範圍,自動增強或減少。在實驗部分,我還示範了基於所提出的eHSI色彩模型,如何犧牲一些對比度來增強影像的飽和度,另一方面,我也提出了一個改進的HSV色彩模型:iHSV,它保留了一般在RGB色彩空間,亮度直方統計圖有高斯分布的特性,那是因為在RGB色彩空間的兩端有較小的飽和度延伸範圍,在中央有較大的飽和度延伸範圍,我也再度示範了如何犧牲一些對比度來增進影像的飽和度,實際上,我們可以根據影像的特性,在亮度和飽和度的強化之間做一些取捨,來獲得一個最佳品質的影像。
最後在遙測影像裡,雲層遮蔽是一個嚴重的問題,這個問題大部分可以用不同時段的影像中,沒有雲區域的拼貼來消除,在這篇論文,我們提出一個多重技巧的方法,藉由不同時段衛星影像的拼貼,在三個步驟內拼貼出無雲的衛星影像。首先,原始影像用我們提出的eHSI色彩模型來強化,其次,一個簡單的亮度閾值,加上幾個不同的比較方法,可以用來擷取出所有雲層覆蓋的區域,然後我們選擇較少雲層覆蓋的影像當作基底影像,並且將其分割成許多方格區域,我們利用偵測到有雲方格區域周邊八個相鄰的方格區域,來涵蓋破碎雲以及由太陽斜照所形成雲的陰影,最後,這些厚雲以及雲的陰影存在的區域,會被另一時段影像相同位置且無雲的區域所替換,然後我們用一個金字塔型的多重解析度融合方法來產生一張無雲的衛星影像。基於我們所提出的完整解決方案,融合後的影像除了可以還原雲層覆蓋的部分,還可以有較佳的亮度和飽和度。
While enhancing the intensity or saturation component for high-quality color image enhancement, keeping the hue component unchanged is important; thus, perceptual color models such as HSI, HSL, and HSV were used. Hue-Saturation-Intensity (HSI) is a public color model, many color applications are commonly based on this model; however, the transformation from HSI model to RGB model usually generates the out-of-gamut problem after modifying intensity and saturation in the HSI model. Moreover, the saturation component is always increased or decreased following the change of intensity component no matter what the attainable saturation range is.
The HSV (Hue-Saturation-Value) color model is popular for color image enhancement and segmentation; but the identical-value plane of the HSV color space is parallel to one of the three ceiling planes of the RGB cube, the area of the plane will be extended as the value is increased. Hence the value histogram is concentrated in the high value portion; the low saturation pixels are highly separated from the high saturation ones after enhancement on the value components, such as histogram equalization and histogram stretching, although their hue and intensity are approximate.
In this paper, we propose accurate formulas for the color transformation between RGB and the proposed HSI color model, called the exact HSI (eHSI) color model, to resolve the out-of-gamut problem directly as well as to automatically adapt the saturation range; that is, the saturation component can be enhanced or reduced according to the attainable maximum saturation range. In experiments, we demonstrate how to sacrifice a little contrast to improve the image saturation based on the proposed eHSI color model. On the other hand, we propose an improved HSV color model iHSV, which preserves the Gaussian distribution characteristic of the intensity histogram in RGB cube; that is, the maximum saturation range is smaller on both ends and larger in the central area of the value axis in the corresponding HSV model. We also demonstrate how the saturation of an image can be improved by sacrificing a little contrast in the improved HSV color model. In practice, we can take a counterbalance between intensity enhancement and saturation enhancement to obtain a better quality image based on the characteristics of images.
Furthermore, partial cloud cover is a serious problem in optical remote sensing images. The problem can be mostly resolved by mosaicking the cloud-free areas of multi-temporal images. We propose multidisciplinary methods to generate cloud-free mosaic images from multi-temporal satellite images in three steps. At first, all original images are enhanced in intensity based on the proposed exact HSI (eHSI) color model. Secondly, an intensity thresholding accompanied with a difference comparison method is used to extract all cloud-cover regions. Then we choose the image with the least thin cloud cover as the base image and divide the image into grid zones. We find the thin-cloud and cloud-shadow zones in the eight neighbors of the thick cloud zones based on the relative locations and elevation angle of the sun. Finally, the cloud and cloud-shadow zones of the base image are replaced by the same-location cloud-free zones on other temporal images; then a pyramid multi-scale fusion method is used to generate cloud-free satellite images. Based on the proposed complete approach, fused images with proper brightness and saturation are produced from source images that may have variant brightness.
[1] W.-C. Kao, L.-Y. Chen, and S.-H. Wang, "Tone reproduction in color imaging systems by histogram equalization of macro edges," in Proc. of IEEE Tenth International Symposium on Consumer Electronics, St. Petersburg, Sep. 11, 2006, pp. 1-6.
[2] W.-C. Kao, S.-H. Wang, L.-Y. Chen, and S.-Y. Lin, “Design considerations of color image processing pipeline for digital cameras,” IEEE Trans. on Consumer Electronics, vol.52, no.4, pp.1144-1152, 2006.
[3] T. Tateyama, Z. Nakao, X. Han, and Y.-W. Chen, “Contrast enhancement of mr brain images by canonical correlations based kernel independent component analysis,” Int. Journal of Innovative Computing, Information and Control, vol.5, no.7, pp.1857-1866, 2009.
[4] M. Hossain and M. Alsharif, “Minimum mean brightness error dynamic histogram equalization for brightness preserving image contrast enhancement,” Int. Journal of Innovative Computing, Information and Control, Vol.5, no.10, pp.3249-3260, 2009.
[5] J. Pan, C. Zhang, and Q. Guo, “Image enhancement based on the shearlet transform,” ICIC Express Letters, vol.3, no.3 (B), pp.621-626, 2009.
[6] Y. Zhang, C. Zhang, J. Chi, and R. Zhang, “An algorithm for enlarged image enhancement,” ICIC Express Letters, vol.3, no.3 (B), pp.669-674, 2009.
[7] R. N. Strickland, C. Kim, and W. F. McDonnell, “Digital color image enhancement based on the saturation component,” Optical Engineering, vol.26, pp.609-616, 1987.
[8] B. A. Thomas, R. N. Strickland, and J. J. Rodriguez, "Color image enhancement using spatially adaptive saturation feedback," in Proc. of Int. Conf. on Image Processing, Santa Barbara, CA, Oct. 26-29, 1997, vol.3, pp.30-33.
[9] A. Toet, "Multiscale color image enhancement," in Proc. of Int. Conf. on Image Processing and its Application, Maastricht, Netherlands, Apr.7-9, 1992, pp.583-585.
[10] I. Pitas and P. Kiniklis, “Multichannel techniques in color image enhancement and modeling,” IEEE Trans. on Image Processing, vol.5, no.1, pp.168-171, 1996.
[11] P. E. Trahanias and A. N. Venetsanopoulos, "Color image enhancement through 3-D histogram equalization," in Proc. of 11th IAPR Int. Conf. on Pattern Recognition, The Hague, Netherlands, Aug.30 - Sep.3, 1992, vol.3, pp. 545-548.
[12] P. A. Mlsna and J. J. Rodriguez, “A multivariate contrast enhancement technique for multispectral images,” IEEE Trans. on Geoscience and Remote Sensing, vol.33, no.1, pp.212-216, 1995.
[13] P. A. Mlsna, Q. Zhang, and J. J. Rodriguez, "3-D histogram modification of color images," in Proc. of Int. Conf. on Image Processing, Lausanne, Switzerland, Sep.16-19, 1996, pp.1015-1018.
[14] Q. Zhang, P. A. Mlsna, and J. J. Rodriguez, "A recursive technique for 3-D histogram enhancement of color images," in Proc. of the IEEE Southwest Symp. on Image Analysis and Interpretation, San Antonio, TX, Apr.8-9,1996, pp. 218-223.
[15] I. M. Bockstein, “Color equalization method and its application to color image processing,” J. Opt. Soc. Am. A, vol.3, no.5, pp.735-737, 1986.
[16] A. R. Weeks, G. E. Hague, and H. R. Myler, “Histogram equalization of 24-bit color images in the color difference (C-Y) color space,” Journal of Electronic Imaging, vol.4, no.1, pp.15-22, 1995.
[17] J. Duan and G. Qiu, "Novel histogram processing for colour image enhancement," in Proc. of The Third Int. Conf. on Image and Graphics, Hong Kong, Dec.18-20, 2004, pp.55-58.
[18] S. K. Naik and C. A. Murthy, “Hue-preserving color image enhancement without gamut problem,” IEEE Trans. on Image Processing, vol.12, no.12, pp.1591-1598, 2003.
[19] M.-S. Shyu and J.-J. Leou, “A genetic algorithm approach to color image enhancement,” Pattern Recognition, vol.31, no.7, pp.871-880, 1998.
[20] C. C. Yang and J. J. Rodriguez, "Efficient luminance and saturation processing techniques for bypassing color coordinate transformations," in Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics, Vancouver, BC, Canada, Oct.22-25, 1995, pp.667-672.
[21] C. C. Yang and J. J. Rodriguez, "Saturation clipping in the LHS and YIQ color spaces," in Proc. of Conf. on Color Imaging: Device-Independent Color, Color Hard Copy, and Graphic Arts, San Jose, CA, Jan.29, 1996, pp.297-307.
[22] J. J. Rodriguez and C. C. Yang, “High-resolution histogram modification of color images,” Graphical Models and Image Processing, vol.57, no.5, pp.432-440, 1995.
[23] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, Upper Saddle River, NJ, 2007.
[24] G. J. Chamberlin, The CIE International Color System Explained, 2nd edition, The Tintometer Ltd., Salisbury, England, 1951.
[25] F. Chun, M. Jian-wen, D. Qin, and C. Xue, "An improved method for cloud removal in ASTER data change detection," in Proc. Int. Geoscience and Remote Sensing Symp., Anchorage, Alaska, Sep.20-24, 2004, pp.3387-3389.
[26] U. Amato, A. Antoniadis, V. Cuomo, L. Cutillo, M. Franzese, L. Murino, and C. Serio, “Statistical cloud detection from SEVIRI multispectral images,” Remote Sensing of Environment, vol.112, no.3, pp.750-766, 2008.
[27] Y. S. Choi, C. H. Ho, M. H. Ahn, and Y. M. Kim, “An exploratory study of cloud remote sensing capabilities of the Communication, Ocean and Meteorological Satellite (COMS) imagery,” Int. Journal of Remote Sensing, vol.28, pp.4715-4732, 2007.
[28] Z. Wang, J. Jin, J. Liang, K. Yan, and Q. Peng, "A new cloud removal algorithm for multi-spectral images," in Proc. SAR and Multispectral Image Processing, Wuhan, China, Oct.31 - Nov.2, 2005, pp.60430W-11.
[29] P. Arellano, Missing Information in Remote Sensing: Wavelet Approach to Detect and Remove Clouds and Their Shadows, Master Thesis, Int. Institute of Geo-information Science and Earth Observation, Enschede, The Netherlands, 2003.
[30] S. Gabarda and G. Cristóbal, “Cloud covering denoising through image fusion,” Image and Vision Computing, vol.25, no.5, pp.523-530, 2007.
[31] E. H. Helmer and B. Ruefenacht, “Cloud-free satellite image mosaics with regression trees and histogram matching,” Photogrammetric Engineering and Remotr Sensing, vol.71, no.9, pp.1079, 2005.
[32] M. Li, S. C. Liew, and L. K. Kwoh, "Generating "cloud free" and "cloud-shadow free" mosaic for SPOT panchromatic images." in Proc. IEEE Int. Geoscience and Remote Sensing Symp., Toronto, Canada, Jun.24-28, 2002, vol.4, pp.2480-2482.
[33] M. Li, S. C. Liew, and L. K. Kwoh, "Producing cloud free and cloud-shadow free mosaic from cloudy IKONOS images," in Proc. IEEE Int. Geoscience and Remote Sensing Symp., Toulouse, France, Jul.21-25, 2003, vol.6, pp. 3946-3948.
[34] S. C. Liew, M. Li, L. K. Kwoh, P. Chen, and H. Lim, ""Cloud-free" multi-scene mosaics of SPOT images." in Proc. IEEE Int. Geoscience and Remote Sensing Symp., Seattle, WA, Jul.6-10, 1998, vol. 2, pp. 1083- 1085.
[35] B. Wang, A. Ono, K. Muramatsu, and N. Fujiwara, “Automated detection and removal of clouds and their shadows from Landsat TM images,” IEICE Tran. on information and systems, vol.82, no.2, pp.453-460, 1999.
[36] D.-C. Tseng, H.-T. Tseng, and C.-L. Chien, “Automatic cloud removal from multi-temporal SPOT images,” Applied Mathematics and Computation, vol.205, no.2, pp.584-600, 2008.
[37] P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. on Communications, vol.31, no.4, pp.532-540, 1983.
[38] M. Kubo, H. Koshinaka, and K. I. Muramoto, "Extraction of clouds from satellite imagery in the Antarctic using wavelet transform and Mahalanobis classifier." in Proc. IEEE Int. Geoscience and Remote Sensing Symp., Sydney, Australia, Jul.9-13, 2001, vol.5, pp.2158-2160.
[39] Z. Li, Z. Jing, X. Yang, and S. Sun, “Color transfer based remote sensing image fusion using non-separable wavelet frame transform,” Pattern Recognition Letters, vol.26, no.13, pp.2006-2014, 2005.
[40] J. Foley, Computer Graphics: Principles and Practice, Massachusetts Addison-Wesley, 1995.
[41] Y. H. Hu, H. B. Lee, and F. L. Scarpace, “Optimal linear spectral unmixing,” IEEE Trans. on Geoscience and Remote Sensing, vol.37, no.1, pp.639-644, 1999.
[42] C. L. Chien and D.-C. Tseng, “Color image enhancement with the exact IHS (eIHS) color transformation,” Int. Journal of Innovative Computing, Information and Control, 2011. (to appear)
[43] E. Reinhard, M. Adhikhmin, B. Gooch, P. Shirley, “Color transfer between images,” IEEE Computer Graphics and Applications, vol.21, no.5, pp.34-41, 2001.
[44] D. L. Ruderman, T. W. Cronin, and C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A, vol.15, no.8, pp.2036-2045, 1998.
[45] A. R. Weeks, L. J. Sartor, and H. R. Myler, “Histogram specification of 24-bit color images in the color difference (C-Y) color space,” Journal of Electronic Imaging, vol.8, no.3, pp.290-300, 1999.