| 研究生: |
劉天祺 Tien-Chi Liu |
|---|---|
| 論文名稱: |
18世紀台灣歷史海嘯研究:1781年加藤港暴漲暨1782年海嘯事件之還原與分析 Historical Tsunamis of Taiwan in the Eighteenth Century:Reconstruction of the 1781 Jiateng Harbor Flooding and 1782 Tsunami Event |
| 指導教授: |
吳祚任
Tso-Ren Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 歷史海嘯 、影響強度分析法 、1781年加藤港暴漲 、1782年海嘯事件 |
| 外文關鍵詞: | Historical tsunami, Impact Intensity Analysis, 1781 Jiateng harbor flooding, 1782 Tsunami event |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在分析18世紀發生於臺灣之兩次歷史海嘯,藉由耙梳歷史文獻蒐集線索,並以數值模式進行事件重建,最後評估臺灣西南部之潛在海嘯風險。兩次歷史海嘯事件分別為:《臺灣采訪冊》記載之西元1781年(乾隆四十六年四、五月間)台灣西南沿海與加藤港海水暴漲,與以外國文字記錄卻無確切時間之西元1782年海嘯。本論文亦審視同樣發生於1782年四、五月之臺灣風災中外文獻,以進行歷史文獻交叉比對。探討這兩起歷史海嘯事件,除須悉心整理和比對文獻記錄外,亦進行多種情境數值模式與分析。本研究使用影響強度分析法(Impact Intensity Analysis, IIA)及海嘯到時分析法(Tsunami Arrival-Time Analysis, TATA)協助還原歷史海嘯事件,定位海嘯源之可能所在區域,並以康乃爾大學開發之多重網格海嘯模式(Cornel Multi-grid Coupled of Tsunami Model, COMCOT)進行數值模擬,分析局部海底山崩與馬尼拉海溝地震活動所產生之海嘯及其影響。模擬結果顯示,1781年加藤港暴漲之海嘯源頭位於東港研究場址之西南偏南側。然而,經數值模擬暨歷史文獻記錄交互分析,1782年海嘯事件之存在應受質疑與進一步檢視,並不排除其為風暴潮事件之可能性。最後,本研究以影響強度分析法進行今日臺灣西南沿海地區之海嘯風險評估。結果顯示近源海嘯波可能於海嘯發生後三十分鐘內抵達西南沿海地區,故當地區居民的疏散時間十分有限。
This research aims to study two of the historical tsunamis occurred in Taiwan during the 18th century and to reconstruct the incidents, as well as to assess the tsunami hazard in coastal arears of the southwestern Taiwan. The 1781 Jiateng Harbor Flooding, recorded by the Chinese historical document, Taiwan Interview Catalogue, took place on the southwest coast of Taiwan. On the other hand, the 1782 Tsunami was documented in foreign languages, with uncertainties of the actual time. Reasoning these historical events requires not only carefully examining the literature records but also performing the scenarios that match the descriptions. The Impact Intensity Analysis (IIA) and the Tsunami Arrival-Time Analysis (TATA) method are employed to locate possible regions of tsunami sources in order to reproduce the events. Numerical simulations based on the Cornell Multi-Grid Coupled Tsunami Model (COMCOT) analyze the influence of different types of tsunami generated both by submarine landslides in the localized area and seismic activities of Manila trench. Numerical results indicate that the source of the 1781 Jiateng Harbor Flooding very possibly located at the South South-West side of Donggang. However, simulation results and historical records put the existence of 1782 Tsunami in doubt, and the possibility of storm surges could not be ruled out. Finally, IIA simulations are carried out to assess up-to-date tsunami hazard in coastal arears of the southwestern Taiwan. Results show that for a nearby origin, tsunami waves would arrive at the coastal region in less than 30 minutes, and local residents would have very limited time to evacuate.
Aitchison, A. (1807). The New Encyclopaedia, Or, Universal Dictionary of Arts and Sciences ... Vernor, Hood and Sharpe.
Bretschneider, C. L., & Wybro, P. G. (1977). Tsunami inundation prediction. In Coastal Engineering 1976 (pp. 1006-1024).
Chagué-Goff, C., Niedzielski, P., Wong, H. K., Szczuciński, W., Sugawara, D., & Goff, J. (2012). Environmental impact assessment of the 2011 Tohoku-oki tsunami on the Sendai Plain. Sedimentary geology, 282, 175-187.
Chang, Y., Chu, K. W., & Chuang, L. Z. H. (2018). Sustainable coastal zone planning based on historical coastline changes: A model from case study in Tainan, Taiwan. Landscape and urban planning, 174, 24-32.
Chen, G. Y. (1830). Taiwan Interview Catalogue [in Chinese], Rep.
Chen, S. C., Tsai, C. H., Hsu, S. K., Yeh, Y. C., Liu, C. S., Chung, S. H., & Wei, C. Y. (2018). Fangliao Slide--a large slope failure in the upper Kaoping Slope off southwest Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 29(1).
Chen, X. X., Yuan, D. Q., & Wu, C. J. (1996). The source rupture feature of the southern Taiwan Straits earthquake of September 16, 1994 (M S 7.3) & the analysis of earthquake circumstance in southeastern coast of China. Acta Seismologica Sinica, 9(2), 197-208.
Cheng, S. N., Shaw, C. F., & Yeh, Y. T. (2016). Reconstructing the 1867 Keelung Earthquake and Tsunami Based on Historical Documents. Terrestrial, Atmospheric & Oceanic Sciences, 27(3).
Chiang, C. S., & Yu, H. S. (2006). Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80(3-4), 199-213.
Chung, M. J. (2018). IIA and TATA approaches to reconstructing and analyzing the 1960 Chile and 1867 Keelung tsunami events [in Chinese], Master thesis, National Central University, Institute of Hydrological and Oceanic Sciences, Taiwan.
Davidson, J. W. (1903). The island of Formosa, past and present: History, people, resources, and commercial prospects. Tea, camphor, sugar, gold, coal, sulphur, economical plants, and other productions. Macmillan & Company.
Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World Scientific Publishing Company.
Ganse, R. A., & Nelson, J. B. (1982). Catalog of significant earthquakes 2000 BC to 1979, including quantitative casualties and damage. Bulletin of the Seismological Society of America, 72(3), 873-877.
Gazette de France. (1783). Paris: Imprimerie royale.
Griffiths, R., & Griffiths, G. E. (Eds.). (1785). The Monthly Review (Vol. 72). R. Griffiths.
Hsu, S. K., Wang, S. Y., Liao, Y. C., Yang, T. F., Jan, S., Lin, J. Y., & Chen, S. C. (2013). Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters, 369, 98-107.
Hsu, Y. J., Yu, S. B., Loveless, J. P., Bacolcol, T., Solidum, R., Luis Jr, A., ... & Woessner, J. (2016). Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system. Journal of Geophysical Research: Solid Earth, 121(10), 7639-7665.
Huang, W. P., Hsu, C. A., Kung, C. S., & Yim, J. Z. (2007). Numerical studies on typhoon surges in the Northern Taiwan. Coastal Engineering, 54(12), 883-894.
Jäger, J. L. (1784). Philosophisch und physikalische Abhandlungen.
Lee, C. J. (2014). The Development of Taiwan Tsunami Fast Calculation System and Reconstructing of the 1867 Keelung Tsunami Event [in Chinese], Master thesis, National Central University, Institute of Hydrological and Oceanic Sciences, Taiwan.
Lee, P. Y. (2015). Lanyu Tsunami Boulders and Dynamic Analysis of 1867 Keelung Tsunami [in Chinese], Master thesis, National Central University, Institute of Hydrological and Oceanic Sciences, Taiwan.
Li, L., Switzer, A. D., Chan, C. H., Wang, Y., Weiss, R., & Qiu, Q. (2016). How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea. Journal of Geophysical Research: Solid Earth, 121(8), 6250-6272.
Li, L., Switzer, A. D., Wang, Y., Chan, C. H., Qiu, Q., & Weiss, R. (2018). A modest 0.5-m rise in sea level will double the tsunami hazard in Macau. Science advances, 4(8), eaat1180.
Li, L., Switzer, A. D., Wang, Y., Weiss, R., Qiu, Q., Chan, C. H., & Tapponnier, P. (2015). What caused the mysterious eighteenth century tsunami that struck the southwest Taiwan coast?. Geophysical Research Letters, 42(20), 8498-8506.
Lin, A. T., Yao, B., Hsu, S. K., Liu, C. S., & Huang, C. Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1-2), 28-42.
Lin, A. T., Yao, B., Hsu, S. K., Liu, C. S., & Huang, C. Y. (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479(1-2), 28-42.
Lin, M. S. (2006). The Study Methods of Historical Tsunami Research (Taiwan) [in Chinese]. Ti-Chi, 25, 2, 71-81.
Liu, C. S., Lundberg, N., Reed, D. L., & Huang, Y. L. (1993). Morphological and seismic characteristics of the Kaoping Submarine Canyon. Marine Geology, 111(1-2), 93-108.
Liu, P. L. F., Cho, Y. S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259-285.
Liu, P. L. F., Cho, Y. S., Yoon, S. B., & Seo, S. N. (1995). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In Tsunami: Progress in prediction, disaster prevention and warning (pp. 99-115). Springer, Dordrecht.
Liu, P. L. F., Wang, X., & Salisbury, A. J. (2009). Tsunami hazard and early warning system in South China Sea. Journal of Asian Earth Sciences, 36(1), 2-12.
Liu, P. L. F., Woo, S. B., & Cho, Y. S. (1998). Computer programs for tsunami propagation and inundation. Cornell University, 25.
Liu, Y., Santos, A., Wang, S. M., Shi, Y., Liu, H., & Yuen, D. A. (2007). Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Physics of the earth and planetary interiors, 163(1-4), 233-244.
Ma, K. F., & Lee, M. F. (1997). Simulation of historical tsunamis in the Taiwan region. Terrestrial, Atmospheric and Oceanic Sciences, 8(1), 13-30.Mak, S., & Chan, L. S. (2007). Historical tsunamis in south China. Natural hazards, 43(1), 147-164.
Mak, S., & Chan, L. S. (2007). Historical tsunamis in south China. Natural hazards, 43(1), 147-164.
Mallet, R. (1854). Catalogue of recorded earthquakes from 1606 BC to AD 1850. Rep. Br. Assoc. Meet, 24.
Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T. R., Lin, Y., ... & Pan, T. C. (2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami. Journal of Asian Earth Sciences, 36(1), 13-20.
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
Okal, E. A., Synolakis, C. E., & Kalligeris, N. (2011). Tsunami simulations for regional sources in the South China and adjoining seas. Pure and applied geophysics, 168(6-7), 1153-1173.
Omori, F. (1916). CHAPTER II. HISTORICAL ACCOUNTS OF SAKURA-JIMA ERUPTIONS (THE SAKURA-JIMA ERUPTIONS AND EARTHQUAKES II [On the Sound and Ash-precipitation Areas of, and on the Level Changes caused by, the Eruptions of 1914, with Historical Sketches of Earlier Sakura-jima Outbursts]). Bulletin of the Imperial Earthquake Investigation Committee, 8(2), 55-84.
Perrey, M. A. (1854). Documents sur les tremblements de terre et les phénomènes volcaniques au Japon. Barret.
Pickering, K. T., & Hiscott, R. N. (2015). Deep marine systems: processes, deposits, environments, tectonics and sedimentation. John Wiley & Sons.
Qiu, Q., Li, L., Hsu, Y. J., Wang, Y., Chan, C. H., & Switzer, A. D. (2019). Revised earthquake sources along Manila trench for tsunami hazard assessment in the South China Sea.
Rees, A. (1819). The cyclopædia; or, universal dictionary of arts, sciences, and literature (Vol. 15). Longman, Hurst, Rees, Orme & Brown.
Soloviev, S. L., & Go, C. N. (1974). A catalogue of tsunamis on the western shore of the Pacific Ocean (173-1968). Moscow, USSR: Nauka Publishing House.
Su, C. C., Hsu, S. T., Hsu, H. H., Jing-Yi, L., & Dong, J. J. (2018). Sedimentological characteristics and seafloor failure offshore SW Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 29(1), 6.
Terry, J. P., Winspear, N., Goff, J., & Tan, P. H. (2017). Past and potential tsunami sources in the South China Sea: A brief synthesis. Earth-Science Reviews, 167, 47-61.
Thanawood, C., Yongchalermchai, C., & Densrisereekul, O. (2006). Effects of the December 2004 tsunami and disaster management in southern Thailand. Science of Tsunami Hazards, 24(3), 206-217.
Tsai, Y. L. (2014). The Development of Storm SurgeFast Calculation System and the Reconstruction of 1845 Yunlin Kouhu Event [in Chinese], Master thesis, National Central University, Institute of Hydrological and Oceanic Sciences, Taiwan.
Wang, X., & Power, W. L. (2011). COMCOT: a tsunami generation propagation and run-up model. GNS Science.
Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: Predictive equations and case studies. Journal of waterway, port, coastal, and ocean engineering, 131(6), 298-310.
Wu, C. Y. (2008). The distribution of submarine and characteristics landslides offshore southern Taiwan [in Chinese], Master thesis, National Tauwan University, Department of Oceanography, Taiwan.
Wu, H. (2017), The Development of the Earthquake Tsunami Relationship Analysis and the Study of Potential Tsunami Threat in Taiwan [in Chinese], Master thesis, National Central University, Institute of Hydrological and Oceanic Sciences, Taiwan.
Wu, T. R. (2012). Deterministic study on the potential large tsunami hazard in Taiwan. Journal of Earthquake and Tsunami, 6(03), 1250034.
Wu, T. R., & Huang, H. C. (2009). Modeling tsunami hazards from Manila trench to Taiwan. Journal of Asian Earth Sciences, 36(1), 21-28.
Wu, T. R., Chung, M. J., Liu, T. C., Tsai, Y. L., Lin, J. W., Chuang, M. H., ... & Lee, S. J. (2019, January). Finding the Source Location of 2018 Sulawesi earthquake and tsunami by IIA and TATA methods. In Geophysical Research Abstracts (Vol. 21).
Yu, M. S. (1994). Destructive Earthquake Tsunamis in the Ming and Ching Eras [in Chinese], Meteorological Bulletin, 40(1), 37–46.
尹全海,” 中央政府賑濟臺灣文獻.清代卷”,2017。
徐泓,”清代台灣自然災害史料新編”,pp.238-241,2007。
王志文,”感性與理性:鄉士神話的科學探討-以金湖牽狀為例”,pp.391-427,2002。