| 研究生: |
王裕貴 Yu-Kuei Wang |
|---|---|
| 論文名稱: |
兩性雙離子性共聚物之合成以抵抗聚丙烯膜表面之生物積垢 Amphiphilic and zwitterionic copolymer synthesis for anti-fouling surface coating on polypropylene membranes |
| 指導教授: |
阮若屈
Ruoh-chyu Ruaan 張雍 Yung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 丙烯酸酯 、馬來酸酐 、抗生物積垢 、聚丙烯膜 、雙離子性 |
| 外文關鍵詞: | Zwitterionic, Polypropylene membrane, Anti-fouling, Maleic anhydride, Acrylate |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙離子性(zwitterionic)材料為一同時具有正電性電荷及負電性電荷於同一單體而成一電中性的結構,已被證實具有良好的抗生物積垢能力,但不易改質至疏水性材料表面,因此本篇研究擬合成一同時具有疏水性片段與雙離子性結構片段的共聚物,使其疏水性片段得以利用疏水性作用力附著於疏水性聚丙烯(polypropylene, PP)濾膜上,暴露在外的雙離子性結構則用以對抗生物分子的沾黏。本研究選用順丁烯二酸酐(Maleic anhydride, MA),使之與疏水性單體丙烯酸十八酯(octadecyl acrylate, OA)及丙烯酸己酯(hexyl acrylate, HA)於共溶劑下共聚合,再將所得之共聚物再以N,N’-二甲基乙二胺(N,N’-Dimethylethylenediamine, DMEA)開環而形成一同時具有疏水性片段與雙離子性結構片段的共聚物(MAOA-DMEA與MAHA-DMEA),並透過控制不同的共聚合起始劑量以獲得不同分子量共聚物,且藉由核磁共振光譜儀(1H-NMR)分析其化學結構,及以膠體滲透層析儀(GPC)分析其分子量。接著量測經過不同分子量的共聚物改質之PP濾膜對牛血清蛋白(bovine serum albumin, BSA)溶液中的蛋白質吸附變化量,並觀察測試細菌E. coli與S. maltophilia在經共聚物改質後的PP膜上貼附的情形。實驗結果發現經過MAOA-DMEA系列改質的PP緻密膜可降低80%以上的BSA吸附量,且對抵抗E. coli與S. maltophilia的貼附具有一定的能力。雙離子性(zwitterionic)材料為一同時具有正電性電荷及負電性電荷於同一單體而成一電中性的結構,已被證實具有良好的抗生物積垢能力,但不易改質至疏水性材料表面,因此本篇研究擬合成一同時具有疏水性片段與雙離子性結構片段的共聚物,使其疏水性片段得以利用疏水性作用力附著於疏水性聚丙烯(polypropylene, PP)濾膜上,暴露在外的雙離子性結構則用以對抗生物分子的沾黏。本研究選用順丁烯二酸酐(Maleic anhydride, MA),使之與疏水性單體丙烯酸十八酯(octadecyl acrylate, OA)及丙烯酸己酯(hexyl acrylate, HA)於共溶劑下共聚合,再將所得之共聚物再以N,N’-二甲基乙二胺(N,N’-Dimethylethylenediamine, DMEA)開環而形成一同時具有疏水性片段與雙離子性結構片段的共聚物(MAOA-DMEA與MAHA-DMEA),並透過控制不同的共聚合起始劑量以獲得不同分子量共聚物,且藉由核磁共振光譜儀(1H-NMR)分析其化學結構,及以膠體滲透層析儀(GPC)分析其分子量。接著量測經過不同分子量的共聚物改質之PP濾膜對牛血清蛋白(bovine serum albumin, BSA)溶液中的蛋白質吸附變化量,並觀察測試細菌E. coli與S. maltophilia在經共聚物改質後的PP膜上貼附的情形。實驗結果發現經過MAOA-DMEA系列改質的PP緻密膜可降低80%以上的BSA吸附量,且對抵抗E. coli與S. maltophilia的貼附具有一定的能力。
Zwitterionic moieties that simultaneously own a positively and a negatively charged groups have been demonstrated to have excellent anti-fouling ability. The remaining problem is how to attach zwitterionic moieties onto the surface of a hydrophobic membrane, such as the polypropylene (PP) membrane. To solve this problem, we try to synthesize amphiphilic zwitterionic copolymers, which compromise both hydrophobic and zwitterionic monomers, onto the PP membranes. Zwitterionic monomers are highly water soluble. It is difficult to find a suitable solvent which simultaneously dissolve hydrophobic and zwitterionic monomers. Therefore, we try to synthesize the copolymers by co-polymerize octadecyl acrylate or hexyl acrylate with maleic anhydride in toluene, and then the maleic anhydride in copolymers are reacted with N,N’-Dimethylethylenediamine (DMEA) to form a zwitterionic moiety containing both carboxylic and N,N’-dimethylethyleneamine. The structures and molecular weight of copolymers have been characterized by NMR and GPC. The effect of molecular weight of copolymers on the antifouling properties of coated membranes are under investigation. The amount of BSA adsorption and bacteria (E. coli and S. maltophilia) adhesion on PP membranes are measured. The experimental results show that the PP dense membrane which modified through the MAOA-DMEA series copolymer can reduce more than 80% of BSA adsorption, and they have certain ability to resist the adhesion of S. maltophilia.
[1] M. Mulder, Basic Principles of membrane technology, Kluwer Academic Publishers, Netherlands, 1996.
[2] W.S. Winston Ho, K.K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992.
[3] G. Belfort, R.H. Davis, A.L. Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration, Journal of Membrane Science 96 (1994) 1-58.
[4] K.J. Jim, A.G. Fane, C.J.D. Fell, D.C. Joy, Fouling mechanisms of membranes during protein ultrafiltration, Journal of Membrane Science 68 (1992) 79-91.
[5] R. Chan, V. Chen, Characterization of protein fouling on membranes: opportunities and challenges, Journal of Membrane Science 242 (2004) 169-188.
[6] J. Mueller, R.H. Davis, Protein fouling of surface-modified polymeric microfiltration membranes, Journal of Membrane Science 116 (1996) 47-60.
[7] S.T. Kelly, A.L. Zydney, Mechanisms for BSA fouling during microfiltration, Journal of Membrane Science 107 (1995) 115-127.
[8] M. Habash, G. Reid, Microbial biofilms: Their development and significance for medical device-related infections, Journal of Clinical Pharmacology 39 (1999) 887-898.
[9] J.D. Andrade, Surface and interfacial Aspects of Biomedical Polymers., Plenum Press, New York and London, 1985.
[10] C.A. Johnson, P. Wu, A.M. Lenhoff, ELECTROSTATIC AND VAN-DER-WAALS CONTRIBUTIONS TO PROTEIN ADSORPTION .2. MODELING OF ORDERED ARRAYS, Langmuir 10 (1994) 3705-3713.
[11] R. Hunter, Foundations of Colloid Science, vol. I., Oxford Science Publications, New York, 1989.
[12] J.J. Ramsden, PUZZLES AND PARADOXES IN PROTEIN ADSORPTION, Chemical Society Reviews 24 (1995) 73-78.
[13] L. Vroman, The importance of surfaces in contact phase reactions, Semin Thromb Hemost 13 (1987) 79-85.
[14] C. Salvagnini, Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials, Universite Catholique de Louvain, Belgium, 2005.
[15] L. Vroman, Finding seconds count after contact with blood (and that is all I did), Colloids Surf B Biointerfaces 62 (2008) 1-4.
[16] P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, L. Gram, Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion, Langmuir 19 (2003) 6912-6921.
[17] I.W. Wang, J.M. Anderson, R.E. Marchant, Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets, J Infect Dis 167 (1993) 329-336.
[18] I.W. Wang, J.M. Anderson, M.R. Jacobs, R.E. Marchant, Adhesion of Staphylococcus epidermidis to biomedical polymers: contributions of surface thermodynamics and hemodynamic shear conditions, J Biomed Mater Res 29 (1995) 485-493.
[19] A.T. Poortinga, R. Bos, W. Norde, H.J. Busscher, Electric double layer interactions in bacterial adhesion to surfaces, Surface Science Reports 47 (2002) 3-32.
[20] A.L. Mills, J.S. Herman, G.M. Hornberger, T.H. Dejesus, Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand, Appl Environ Microbiol 60 (1994) 3300-3306.
[21] A. Filimon, E. Avram, S. Dunca, L. Stoica, S. Ioan, Surface Properties and Antibacterial Activity of Quaternized Polysulfones, Journal of Applied Polymer Science 112 (2009) 1808-1816.
[22] A. Terada, A. Yuasa, T. Kushimoto, S. Tsuneda, A. Katakai, M. Tamada, Bacterial adhesion to and viability on positively charged polymer surfaces, Microbiology-Sgm 152 (2006) 3575-3583.
[23] A.M. Klibanov, Permanently microbicidal materials coatings, Journal of Materials Chemistry 17 (2007) 2479-2482.
[24] B.R.F. Gerard J. Tortora, Christine L. Case, Microbiology : An Introduction, Benjamin-Cummings Publishing Company, United States, 1998.
[25] I.E. Alcamo, Fundamentals of microbiology, Baker & Taylor Books, Charlotte, North Carolina, 1997.
[26] J.M. Harris, Poly(ethylene glycol) chemistry biotechnical and biomedical applications, Plenum Press, New York, 1992.
[27] A. Abuchowski, T. van Es, N.C. Palczuk, F.F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, J Biol Chem 252 (1977) 3578-3581.
[28] J.H. Lee, H.B. Lee, J.D. Andrade, BLOOD COMPATIBILITY OF POLYETHYLENE OXIDE SURFACES, Progress in Polymer Science 20 (1995) 1043-1079.
[29] R.E. Holmlin, X.X. Chen, R.G. Chapman, S. Takayama, G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir 17 (2001) 2841-2850.
[30] G.S. Georgiev, E.B. Kamenska, E.D. Vassileva, I.P. Kamenova, V.T. Georgieva, S.B. Iliev, I.A. Ivanov, Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions, Biomacromolecules 7 (2006) 1329-1334.
[31] A.L. Lewis, Phosphorylcholine-based polymers and their use in the prevention of biofouling, Colloids Surf B Biointerfaces 18 (2000) 261-275.
[32] N.N. Kadoma Y, Masuhara E, Yamauchi J,, Synthesis and hemolysis test of polymer containing phophorylcholine groups., Koubunshi Ronbunshu (Japanese Journal of Polymer Science and Technology) 35 (1978) 423-427.
[33] W. Feng, S. Zhu, K. Ishihara, J.L. Brash, Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization, Langmuir 21 (2005) 5980-5987.
[34] K. Ishihara, T. Ueda, N. Nakabayashi, PREPARATION OF PHOSPHOLIPID POLYMERS AND THEIR PROPERTIES AS POLYMER HYDROGEL MEMBRANES, Polymer Journal 22 (1990) 355-360.
[35] Y. Chang, S. Chen, Z. Zhang, S. Jiang, Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines, Langmuir 22 (2006) 2222-2226.
[36] Z. Zhang, S. Chen, Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings, J Phys Chem B 110 (2006) 10799-10804.
[37] Z. Zhang, T. Chao, S. Chen, S. Jiang, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides, Langmuir 22 (2006) 10072-10077.
[38] G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials 28 (2007) 4192-4199.
[39] O. Azzaroni, A.A. Brown, W.T. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self-association, Angew Chem Int Ed Engl 45 (2006) 1770-1774.
[40] N. Cheng, A.A. Brown, O. Azzaroni, W.T.S. Huck, Thickness-dependent properties of polyzwitterionic brushes, Macromolecules 41 (2008) 6317-6321.
[41] W. Yang, S. Chen, G. Cheng, H. Vaisocherova, H. Xue, W. Li, J. Zhang, S. Jiang, Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces, Langmuir 24 (2008) 9211-9214.
[42] Y. Chang, S.C. Liao, A. Higuchi, R.C. Ruaan, C.W. Chu, W.Y. Chen, A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion, Langmuir 24 (2008) 5453-5458.
[43] J.K. Nagy, A.K. Hoffmann, M.H. Keyes, D.N. Gray, K. Oxenoid, C.R. Sanders, Use of amphipathic polymers to deliver a membrane protein to lipid bilayers, Febs Letters 501 (2001) 115-120.
[44] R.S. Kane, P. Deschatelets, G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces, Langmuir 19 (2003) 2388-2391.
[45] Z. Zhang, S. Chen, S. Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization, Biomacromolecules 7 (2006) 3311-3315.
[46] Z. Zhang, H. Vaisocherova, G. Cheng, W. Yang, H. Xue, S. Jiang, Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects, Biomacromolecules 9 (2008) 2686-2692.
[47] B. Chapman, Glow Discharge Processes, Wiley, New York.
[48] Alfred Grill, Cold Plasma in Materials Fabrication., IEEE Press, 1994.
[49] H. Kita, T. Inada, K. Tanaka, K.-i. Okamoto, - 87 (1994) - 147.
[50] X.L. Ma, Y.L. Su, Q. Sun, Y.Q. Wang, Z.Y. Jiang, Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer, Journal of Membrane Science 292 (2007) 116-124.
[51] Y. Wang, J.H. Kim, K.H. Choo, Y.S. Lee, C.H. Lee, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization, Journal of Membrane Science 169 (2000) 269-276.
[52] Y.C. Chiag, Y. Chang, W.Y. Chen, R.C. Ruaan, Biofouling Resistance of Ultrafiltration Membranes Controlled by Surface Self-Assembled Coating with PEGylated Copolymers, Langmuir 28 (2012) 1399-1407.