跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林怡萱
Yi-Xuan Lin
論文名稱: 以計算流體力學模擬徑向多孔介質指形流: 流率與濕潤性的交互作用
Computational Fluid Dynamic Simulation of viscous fingering in radial porous media: interplay between injection and wettability
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 指形流多孔介質濕潤性時變流率
外文關鍵詞: time-dependent injection flow rate
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當兩種流體存在黏度差異時,以低黏度流體驅替高黏度流體會導致流動介面不穩定,這種現象稱為指形流。根據前人研究以時變線性流率進行注入能夠有效抑制徑向Hele-Shaw cell中的黏性指形,本文進一步將其應用在具有亂數分佈的顆粒之多孔介質中,以商用軟體ANSYS Fluent進行模擬。本研究分為兩個部分:徑向Hele-Shaw cell與多孔介質,針對不同濕潤性下線性流率的抑制能力來進行探討。其中濕潤性的改變在Hele-Shaw cell中為改變上下平板壁面,多孔介質則除了上下平板更增加了顆粒的濕潤性,以探討孔隙對流動的影響。
    Hele-Shaw cell結果顯示當流動為非濕潤流體驅替濕潤流體的排移流動時,線性流率可有效的抑制指形;而當濕潤流體驅替非濕潤流體的浸潤流動時,線性流率效果不彰,此結果與上下平板濕潤性造成的垂直面的介面張力方向有關,排移流動的介面張力與流動方向相反,使擾動的成長幅度較小,進而能抑制指形;而浸潤流動的介面張力與流動方向相同,增加了介面的擾動程度,較易形成指形使得線性流率失效。多孔介質中受到孔隙間毛細壓力的影響,排移流動傾向往孔隙大的地方流動,浸潤流動傾向往孔隙小的地方流動;兩者的線性流率皆因為受到孔隙影響使得線性流率抑制指形的效用十分不明顯。


    Displacing a more viscous fluid by another less viscous fluid leads to instabilities of the interface between two fluids due to the viscosity contrast. The phenomenon is called viscous fingering. Researchers already found out that linear time-dependent injection rate is able to suppress this phenomenon. Our work here is to take a step further, by applying the scheme in porous media. We consider the radial Hele-Shaw cell and porous media flow, and focus on how wettability may affect the instability suppress.
    The results in Hele-Shaw cell show that the linear injection flow rate suppress the instabilities effectively for drainage flow, in which a non-wetting fluid displaces a wetting fluid; On the other hand, this scheme doesn’t work for imbibition flow where a wetting fluid displace a non-wetting fluid. This is because the interfacial force caused by the wettability, directs in same the direction as imbibition flow. In porous media, a linear injection rate has little impact on both kinds of flow. Drainage flow tends to flow toward larger pores while imbibition flow most likely flows toward smaller pores, which both induce the onset of instability that is hardly suppressible by the linear flow rates.

    中文摘要 i Abstract ii 符號說明 iii 英文字母 iii 希臘字母 iv 上下標 iv 目錄 v 圖目錄 viii 表目錄 viii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的 4 第二章 數學模型 12 2.1 問題描述 12 2.1.1 Hele-Shaw cell模型 12 2.1.2 多孔介質模型 13 2.1.3 常數流率與線性流率 13 2.2 統御方程式 15 2.2.1 質量守恆方程式 15 2.2.2 動量守恆方程式 15 2.2.3 體積分率方程式 16 2.3 VOF模型及CSF模型 16 2.3.1 VOF模型 17 2.3.2 CSF 模型 17 2.4 邊界條件 18 2.5 流體性質 19 2.6 網格測試 20 第三章 Hele-Shaw cell 26 3.1 模擬條件 26 3.2 濕潤性 27 3.3 排移流動 28 3.4 浸潤流動 29 3.5 綜合比較 30 3.5.1介面長度 30 3.5.2 壓力 32 3.5.3功率 33 第四章 多孔介質 40 4.1 排移流動與浸潤流動 40 4.1.1排移流動 40 4.1.2浸潤流動 41 4.1.3綜合比較 42 4.2 毛細壓力的影響 43 4.2.1排移流動 43 4.2.2浸潤流動 44 4.2.3綜合比較 44 4.3 完全沾濕介質 45 第五章 結論與未來展望 57 5.1 結論 57 5.2 未來展望 59 參考文獻 60

    Al-Housseiny, T. T., Tsai, P. A., & Stone, H. A. (2012). Control of interfacial instabilities using flow geometry. Nature Physics, 8(10), p. 747.
    ANSYS. (2015). ANSYS Fluent Theory Guide. ANSYS, Inc.
    ANSYS. (2015). ANSYS Fluent Users Guide. ANSYS, Inc.
    Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of computational physics, 100(2), pp. 335-354.
    Brener, E. A., Kessler, D. A., Levine, H., & Rappei, W. J. (1990). Selection of the viscous finger in the 90° geometry. Europhysics Letters, Vol. 13, pp. 161-166.
    Callan-Jones, A. C., Joanny, J. F., & Prost, J. (2008). Viscous-fingering-like instability of cell fragments. Physical review letters, 100(25), p. 258106.
    Carrillo, L., Magdaleno, F. X., Casademunt, J., & Ortı´n, J. (1996). Experiments in a rotating Hele-Shaw cell. Physical Review E, Vol. 54, pp. 6260-6267.
    Chuoke, R. L., Van Meurs, P., & van der Poel, C. (1959). The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Society of Petroleum Engineers, Vol. 216, pp. 188-194.
    Dias, E. O., Alvarez-Lacalle, E., Carvalho, M. S., & Miranda, J. A. (2012). Minimization of Viscous Fluid Fingering: A Variational Scheme for Optimal Flow Rates. Physical Review Letters, p. 144502.
    Dias, E. O., Parisio, F., & Miranda, J. A. (2010). Suppression of viscous fluid fingering: A piecewise-constant injection process. Physical Review E 82, p. 067301.
    Ferrari, A., & Lunati, I. (2013). Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in water resources, 57, pp. 19-31.
    Gorell, S., & Homsy, G. (1983). A theory of the optimal policy of oil recovery by secondary displacement process. Society for Industrial and Applied Mathematics, pp. 79-98.
    Gu, Y. (2001). Drop size dependence of contact angles of oil drops on a. Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp. 215-224.
    Hill, S. (1952). Channeling in packed columns. Chemical Engineering Science, 1(6), pp. 247-253.
    Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), pp. 201-225.
    Homsy, G. M. (1987). Viscous fingering in porous media. Ann. Rev. Fluid Mech., pp. 271-311.
    Horgue, P., Augier, F., Duru, P., Prat, M., & Quintard, M. (2013). Experimental and numerical study of two-phase flows in arrays of cylinders. Chemical Engineering Science, 102, pp. 335-345.
    Hugaboom, D., & Powers, S. (2002). Recovery of coal tar and creosote from porous media: the influence of wettability. Ground Water Monitoring and Remediation, Vol. 22, pp. 83-90.
    Jha, B., Cueto-Felgueroso, L., & Juanes, R. (2011). Fluid Mixing from Viscous Fingering. American Physical Society, p. 194502.
    Leclerc, D. F., & Neale, G. H. (1988). Monte Carlo simulations of radial displacement of oil from a wetted porous medium: fractals, viscous fingering and invasion percolation. J. Phys. A: Math. Gen. 21, pp. 2979-2994.
    Lins, T. F. (2017). Dynamics of Time Dependent Immiscible Injection Flows in Porous Media. Thesis of degree of master of University of Calgary.
    Martyushev, L., & Birzina, A. (2008). Specific features of the loss of stabilityduring radial displacement of fluid in theHele–Shaw cell. Journal of Physic, p. 045201.
    Mukherjee, P. P., Kang, Q., & Wang, C. Y. (2011). Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy & Environmental Science, 4(2), pp. 346-369.
    Paterson, L. (1981). Radial fingering in a Hele Shaw cell. Journal of Fluid Mechanics, 113, pp. 513-529.
    Philip, J. R. (1970). Flow in porous media. Annual Review of Fluid Mechanics, 2(1), pp. 177-204.
    Pihler-Puzović, D., Illien, P., Heil, M., & Juel, A. (2012). Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Physical review letters, 108(7), p. 074502.
    Reis, L., & J, A. M. (2011). Controlling fingering instabilities in nonflat Hele-Shaw geometries. Physical Review E, p. 066313.
    Sader, J. E., Chan, D. Y., & Hughes, B. D. (1994). Non-Newtonian effects on immiscible viscous fingering in a radial Hele-Shaw cell. Physical Review E, Vol.49, pp. 420-432.
    Saffman, P. G., & Taylor, G. (1958, June). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences(Vol. 245,No. 1242), pp. 312-329.
    Than, P., Preziosi, L., Josephl, D. D., & Arney, M. (1988). Measurement of interfacial tension between immiscible liquids with the spinning road tensiometer. Journal of Colloid and Interface Science, Vol. 124, pp. 552-559.
    Trojer, M., Szulczewski, M. L., & Juanes, R. (2015). Stabilizating fluid-fluid displacements in porous media through wettability alteration. Physic Review Application, vol. 3 , p. 054008.
    Wang, Y., Zhang, C., Wei, N., Oostrom, M., Wietsma, T. W., & Li, X. (2012). Experimental study of crossover from capillary to viscous fingering for supercritical CO2−water displacement in a homogeneous pore network. Environmental Science and Technology, pp. 212-218.
    Young, T. (1805). An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, pp. 65-87.
    Zhao, B., MacMinn, C. W., & Juanes, R. (2016). Wettability control on multiphase flow in patterned microfluidics. PNAS, vol. 113, pp. 10251-10256.
    林再興. (2004). 石油採收技術與蘊藏量估算. 科學發展月刊,382, 頁 18-23.
    林鴻諭. (2016). 利用異質孔徑界面增強多孔介質內流體驅替效果之研究. 國立中央大學碩士論文.
    邱瑞祥. (2017). 時變流率對多孔介質指形的影響. 國立中央大學碩士論文

    QR CODE
    :::