| 研究生: |
陳英杰 Ying-chien Chen |
|---|---|
| 論文名稱: |
新型氮化鎵蕭特基二極體之製作與特性分析 Fabrication and analysis of a novel GaN Schottky Diodes |
| 指導教授: |
綦振瀛
Jen-inn Chyi 粘正勳 Cheng-Hsun Nien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 氮化鎵 、蕭特基二極體 |
| 外文關鍵詞: | Schottky diode, GaN |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目標乃是利用AlGaN/GaN 異質結構製作高崩潰電壓與高順向電流之蕭特基二極體,為了改善傳統蕭特基二極體具有大約1 V 開啟電壓(Von)以及過大之漏電流問題,本論文提出一個新穎的整流二極體結構,即P 型氮化鎵-場效蕭特基二極體(P-FESBD),此乃結合雙閘極金屬之蕭特基二極體與pn 接面二極體的設計概念,結構之特點乃是在閘極區域嵌入歐姆金屬,以降低元件的開啟電壓,而p-n 空乏區的作用則是在不需要recessed製程的情況下便達到常關型(normally-off)的操作特性同時降低反向漏電流,此外,由於P 型氮化鎵閘極的表面為歐姆接觸,因此當元件操作於順向偏壓時,P 型氮化鎵閘極會提供電洞注入通道降低開啟後電阻(Ron),完成後之元件獲得0.5 V 的低開啟電壓,開啟後電阻與崩潰電壓(VB)則分別為24 mΩ-cm2 與22 V,經由SIMS 與緩衝層電流量測的分析後發現鎂 (Mg)的擴散以及緩衝層材料的阻值皆是影響P-FESBD 元件特性的關鍵因素。另一方面為了改善傳統大面積蕭特基二極體因材料缺陷導致良率偏低的問題,本研究利用打線(wire bonding)並聯的方式製作陣列式蕭特基二極體,1.5 V 時可得順向電流432 mA,同時崩潰電壓仍維持在160 V。
In this thesis a new AlGaN/GaN high electron mobility transistor basedrectifier, i.e. P-field effect Schottky barrier diode (P-FESBD), is proposed andfabricated. It consists of a p-n diode and a Schottky diode connected in parallel.With the additional p-type GaN gate, the rectifier is expected to operate in the normally-off mode with low reverse leakage current and low on-resistance. The
turn-on voltage, on-state resistance and breakdown voltage of the one finger rectifier with 500×35 μm2 gate area is 0.5 V, 24 mΩ-cm2 and 22 V, respectively. According to secondary ion mass spectroscopy measurement and electrical
characterization, diffusion of the p-type dopant, Mg, and leakage current of the GaN buffer layer are concluded to be the main reasons for poor breakdown voltage.
Furthermore, in order to increase the forward current and yield of GaN Schottky diodes with multi-finger or large gate area, tested Schottky diodes are connected in parallel by wire bonding. Forward current of 432 mA at 1.5 V is achieved on a six-diode device with 160 V breakdown voltage.
參考文獻
[1] Chow TP and Tyagi R., “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron Devices, Vol. 41, 1481-1483, 1998
[2] L. Voss, S. J. Pearton, F. Ren, P. Bove, H. Lahreche, and J. Thuret,“Electrical Performance of GaN Schottky Rectifiers on Si Substrates”,Journal of The Electrochemical Society, 153 (7), G681-G684, 2006
[3] B. J. Baliga, Modern power device, Wiley, New York, 1987
[4] http://www.cree.com/products/power_chip_sales.asp
[5] http://www.veloxsemi.com/pdfs/Preliminary_Specs_VSD08060.pdf
[6] S. Elhamri, R. Berney, W. C. Mitchel, W. D. Mitchell, J. C. Roberts, P.Rajagopal, T. Gehrke, E. L. Piner, and K. J. Linthicum, “An electrical characterization of a two-dimensional electron gas in GaN/AlGaN on silicon substrates”, J. Appl. Phys., Vol. 95, No. 11, 7982~7989, 2005
[7] http://compoundsemiconductor.net/cws/article/news/34464
[8] Yi Zhou, Dake Wang, Claude Ahyi, Chin-Che Tin, John Williams, Minseo Park, N. Mark Williams, Andrew Hanser, “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate”, Solid-State Electronics, Vol. 50, 1744-1747, 2006
[9] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A.V. Govorkov, J. M. Redwing, X. A. Cao and S. J. Pearton, “Al composition dependence of breakdown voltage in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett., Vol.76, 1767, 2000
[10] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A.V. Govorkov, J. M. Redwing, H. Cho and S. J. Pearton, “Temperature dependence and current transport mechanisms in AlxGa1-xN Schottky rectifiers”, Appl. Phys. Lett., Vol. 76, 3816, 2000
[11] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov, N. B.Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee and S. J. Pearton,“Lateral AlxGa1-xN power rectifiers with 9.7 kV reverse breakdown voltage”, Appl. Phys. Lett., Vol. 78, 823, 2001
[12] Z. Z. Bandic´, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V.M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN Schottky rectifiers”, Appl. Phys. Lett., Vol.74, 1266, 1999
[13] J. W. Johnson, A. P. Zhang, Wen-Ben Luo, Fan Ren, Stephen J. Pearton, S. S. Park, Y. J. Park, and Jen-Inn Chyi, “Breakdown Voltage and Reverse Recovery Characteristics of Free-Standing GaN Schottky Rectifiers”, IEEE Transactions on Electron Devices, Vol. 49, No. 1, 2002
[14] S. Yoshida, J. Li, N. Ikeda, and K. Hataya, “AlGaN/GaN field effect Schottky barrier diode (FESBD)”, phys. stat. sol. (c) 2, No. 7, 2602, 2005
[15] K. Takatani, T. Nozawa, T. Oka, H. Kawamura and K. Sakuno,“AlGaN/GaN Schottky-ohmic combined anode field effect diode with fluoride-based plasma treatment”, IEEE ELECTRONICS LETTERS, Vol.44, No. 4, 2008
[16] A. P. Zhang, J. W. Johnson, B. Luo, and F. Ren, S. J. Pearton, S. S. Park and Y. J. Park, J.-I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates”, Appl. Phys. Lett., Vol. 79, 1555, 2001
[17] K. H. Baik, Y. Irokawa, Jihyun Kim, J. R. LaRoche, F. Ren, S. S. Park, Y.J. Park, and S. J. Pearton, “160-A bulk GaN Schottky diode array”, Appl.Phys. Lett., Vol. 83, 3192, 2003
[18] Dallas T. Morisette, James A. Cooper, Jr., Michael R. Melloch, Gary M.Dolny, Praveen M. Shenoy, M. Zafrani, and Jon Gladish, “Static and Dynamic Characterization of Large Area High Current Density SiC Schottky Diodes”, IEEE Trans. Electron Devices, Vol. 48, No. 2, 349-352,
2001
[19] Akira Itoh, Tsunenobu Kimoto and Hiroyuki Matsunami, “Excellent Reverse Blocking Characteristics of High-Voltage 4H-SiC Schottky Rectifiers with Boron-Implanted Edge Termination”, IEEE ELECTRONICS LETTERS, Vol. 17, No. 3, 1996
[20] Vik Saxena, Jian Nong (Jim) Su, and Andrew J. Steckl, “High-Voltage Ni– and Pt–SiC Schottky Diodes Utilizing Metal Field Plate Termination”, IEEE Trans. Electron Devices, Vol. 46, No. 3, 456-464, 1999
[21] Marc C. Tarplee, Vipin P. Madangarli, Quinchun Zhang and Tangali S. Sudarshan, “Design Rules for Field Plate Edge Termination in SiC Schottky Diodes”, IEEE Trans. Electron Devices, Vol. 48, No. 12, 2659-2664, 2001
[22] Nina V. Dyakonova, Pavel A. Ivanov, Vladimir A. Kozlov, M. E. Levinshtein, John W. Palmour, S. L. Rumyantsev, and Ranbir Singh, “Steady-State and Transient Forward Current–Voltage Characteristics of 4H-Silicon Carbide 5.5 kV Diodes at High and Superhigh Current
Densities”, IEEE Trans. Electron Devices, Vol. 46, No. 11, 2188-2194, 1999
[23] Nariaki Ikeda, Kazuo Kato, Kazuo Kondoh, Hiroshi Kambayashi, Jiang Li, and Seikoh Yoshida, “Over 55 A, 800 V high power AlGaN/GaN HFETs for power switching application”, phys. stat. sol. (a) 204, No. 6, 2028–2031, 2007
[24] Wataru Saito, Yoshiharu Takada, Masahiko Kuraguchi, Kunio Tsuda, andIchiro Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications”,IEEE Trans. Electron Devices, Vol. 53, No. 2, 2006
[25] T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs With Thin InGaN Cap Layer for Normally Off Operation”, IEEE ELECTRONICS LETTERS, Vol. 28, No. 7, 2007
[26] X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska and M.S. Shur, “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate”, IEEE ELECTRONICS LETTERS, Vol. 36, No. 8, 2000
[27] Yong Cai, Yugang Zhou, Kei May Lau and Kevin J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode”, IEEE Trans. Electron Devices, Vol. 53, No. 9, 2006
[28] Yifei Zhang, I. P. Smorchkova, C. R. Elsass, Stacia Keller, James P. Ibbetson, Steven Denbaars, Umesh K. Mishra and Jasprit Singh, “Charge control and mobility in AlGaN/GaN transistors: Experimental and theoretical studies”, J. Appl. Phys., Vol. 87, No. 11, 2000
[29] Yasuhiro Uemoto, Masahiro Hikita, Hiroaki Ueno, Hisayoshi Matsuo, Hidetoshi Ishida, Manabu Yanagihara, Tetsuzo Ueda, Tsuyoshi Tanaka, and Daisuke Ueda, “Gate Injection Transistor (GIT)-A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation”, IEEE
Trans. Electron Devices, Vol. 54, No. 12, 3393-3399, 2006
[30] Shang-bui L. Tu., Chandler, Ariz., Bantval J. Baliga, Raleigh, N.C., “Schottky barrier rectifier including Schottky barrier regions of differing barrier heights”, U.S. Patent, 5262668, 1993
[31] A. Kamada, K. Matsubayashi and A. Nakagawa, Y. Terada and T. Egawa,“High-Voltage AlGaN/GaN Schottky Barrier Diodes on Si Substrate with Low-Temperature GaN Cap Layer for Edge Termination”, Proceedings of 20th International Symposium on Power Semiconductor Devices & ICs, Orlando, p225-p228, 2008
[32] Ji-Myon Lee, Ki-Myung Chang, In-Hwan Lee, and Seong-Ju Park, “Highly selective dry etching of III nitrides using an inductively coupled Cl2/O2/Ar plasma”, J. Vac. Sci. Technol., B 18(3), 1409, 2000
[33] Lutz Kirste, Klaus KÖhler, Manfred Maier, Michael Kunzer, Markus Maier, Joachim Wagner, “SIMS depth profiling of Mg back-diffusion in (AlGaIn)N light-emitting diodes”, J Mater Sci: Mater Electron, Vol. 19, S176-S181, 2008
[34] Hideki Hasegawa, Takanori Inagaki, Shinya Ootomo, and Tamotsu Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN”, J. Vac. Sci. Technol., B 21(4), 1844, 2003
[35] B. S. Kang, F. Ren, Y.Irokawa K. W. Baik, S. J. Peartona, C.-C. Pan, G.-T. Chen, J.-I. Chyi, H.-J. Ko and H.-Y. Lee, “Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates”, J. Vac. Sci. Technol. B 22, 710, 2004
[36] Dieter K. Schroder, Semiconductor Material and Device Characterization, Second edition, pp. 138
[37] W. Liu, Handbook of Ⅲ-Ⅴ Heterojunction Bipolar Transistor, pp. 717
[38] A. N. Bright, P. J. Thomas, M. Weyland, D. M. Tricker, C. J. Humphreys, and R. Davies, “Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy”, J. Appl. Phys., Vol. 89, No. 6, 3143~3150, 2001