| 研究生: |
侯昱瑋 Yu-Wei Hou |
|---|---|
| 論文名稱: |
二階段溶脹法製備具交聯結構之均一粒徑微米球 Synthesis of monodisperse and cross-linked structure microsphere by two-stages swelling |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 耐溶劑 、均一粒徑 、高分子微米球 、二階段溶脹法 |
| 外文關鍵詞: | two step swelling, polymer microsphere, monodisperse, solvent resistance |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以二階段溶脹法(Two-step Swelling)來製備出粒徑約10 μm且具有高交聯結構之均一粒徑聚(甲基丙烯酸甲酯/乙二醇二甲基丙烯酸酯)(MMA/EGDMA)微球,首先利用分散聚合法(Dispersion polymerization)合成均一種子微球,再進一步利用二階段溶脹法增加其粒徑與交聯度進而達到耐溶劑、熱穩定性佳等性質。
在分散聚合法中,可以藉由改變溶劑含水比例及單體含量而製備出粒徑範圍3.5 μm到10.2 μm的高分子微球,而考量到粒徑大小及均一度,選擇以溶劑之水含量為20 wt%及添加單體10 g所合成之種子微球來進行後續第二階段的合成,其粒徑為5.2 μm、Cv %為 5.9 %。
二階段溶脹聚合法中,在系統中共添加5.2 μm種子微球0.1 g下,可藉由添加適當比例的助溶脹劑(環己烷)、單體(MMA或EGDMA)及水相抑制劑(亞硝酸鈉)來製備均一粒徑的PMMA或poly(MMA-co-EGDMA)微球。在添加0.1 g助溶脹劑(環己烷)、10 g單體(MMA)及0.2 g水相抑制劑(亞硝酸鈉)下可得到均一粒徑且粒徑大小為11.6 μm的PMMA微球。另一方面,一樣添加0.1 g助溶脹劑(環己烷)及0.2 g水相抑制劑(亞硝酸鈉)下,藉由改變上述單體的添加比例為4.8 g MMA及1.2 g EGDMA,可得到均一粒徑且粒徑大小為10.9 μm的poly(MMA-co-EGDMA)微球。經過耐溶劑及熱穩定性質的測試,可發現本研究所製備的poly(MMA-co-EGDMA)高分子微球確實具有良好的耐溶劑性質,而其熱穩定性比起種子或是未添加架橋劑的微球亦有顯著的提升。
Highly cross-linked, monodisperse with 10 μm poly(MMA-co-EGDMA) microspheres were fabricated by two-step swelling polymerization. At First, the PMMA seed particle was prepared by dispersion polymerization. Then, using two-step swelling polymerization further to increase the particle size and degree of cross linking. These poly(MMA-co-EGDMA) microspheres could achieve the solvent resistance and thermal stability.
In dispersion polymerization, the particle size from 3.5 μm to 10.2 μm can be synthesized by control the water weight fraction and monomer concentration. The optimal PMMA seed particle can be prepared via 20 wt% water weight fraction and 10 g MMA, its particle size is 5.2 μm and Cv value is 5.9 %.
In two-step swelling polymerization, the result show that the uniform PMMA or poly(MMA-co-EGDMA) microsphere could be prepared by adding suitable amount of swelling agent (cyclohexane), monomer (MMA or EGDMA), aqueous inhibitor (NaNO2). The uniform 11.6 μm size of PMMA microsphere could be prepared by added 0.1 g swelling agent (cyclohexane), 10 g monomer (MMA) and 0.2 g inhibitor (NaNO2) in the system when added 0.1 g, 5.2 μm size of PMMA seed microsphere. On the other hand, the uniform 10.9 μm size of poly(MMA-co-EGDMA) microsphere could be prepared by added 0.1 g swelling agent (cyclohexane) and 0.2 g inhibitor (NaNO2) by changing the above monomer amount to 4.8 g MMA, 1.2 g EGDMA. The Poly(MMA-co-EGDMA) particle have excellent performance on solvent resistance. Also, the Poly(MMA-co-EGDMA) particle has significantly enhance on thermal stability than the seed particle and non cross-linked particle.
(1)Minami H, Wang Z, Yamashita T and Okubo M, Thermodynamic analysis of the morphology of monomer-adsorbed, cross-linked polymer particles prepared by the dynamic swelling method and seeded polymerization. Colloid and Polymer Science 2003, 281: 246-252.
(2)Kulin L. I, Flodin P, Ellingsen T, Ugelstad J, Monosized polymer particles in size-exclusion chromatography: I. Toluene as solvent. Journal of Chromatography 1990, 514: 1-9.
(3)Kawaguchi H, Functional polymer microspheres. Progress in Polymer Science 2000, 25: 1171-1210.
(4)Ellingsen T, Aune O, Ugelstad J and Hagen S, Monosized Stationary Phases for Chromatography. Journal of Chromatography 1990, 535: 147-161.
(5)Camli S.T, Senel S and Tuncel A, Cibacron blue F3G-A-attached uniform and macroporous poly(styrene-co-divinylbenzene) particles for specific albumin adsorption. Journal of Biomaterials Science, Polymer Edition 1999, 10: 875-889.
(6)Horak D, Karpisek M, Turkova J, Benes M, Hydrazidefunctionalized poly (2-hydroxyethyl metacrylate) microspheres for immobilization of horseradish peroxidase. Biotechnol. Prog 1999, 15: 208-215.
(7)Yu, D. G.; An, J. H.; Bae, J. Y.; Ahn, S. D.; Kang, S. Y.; Suh, K. S.,
Negatively Charged Ultrafine Black Particles of P(MMA-co-EGDMA) by Dispersion Polymerization for Electrophoretic Displays. Macromolecules 2005, 38: 7485-7491.
(8)A.F. Mansour, R.M. Ahmed, A.H. Bassyouni, and G.M. Nasr, Optical Spectroscopic Studies of Perylene Dye Doped in Copolymer of ST/MMA as Solar Collector. International Journal of Polymeric Materials 2007, 56: 651-662.
(9)M. J. Yim and K. W. Paik, Design and Understanding of Anisotropic Conductive Films (ACFs) for LCD Packaging. Polymeric Electronics Packaging 1997: 233-242.
(10)Y. S. Eom, J. W. Baek, J. T. Moon, J.D. Nam and J. M. Kim, Characterization of Polymer Matrix and Low Melting Point Solder for Anisotropic Conductive Film. Microelectron. Eng. 2008, 85: 327-331.
(11)Chen C.W, Chen C.Y, Preparation of monodisperse polystyrene microspheres:effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. Colloid Polym Sci. 2009, 287:1377-1389.
(12)Unsal E, Camli S. T, Senel S, Tuncel A, Chromatographic Performance of Monodisperse–Macroporous Particles Produced by“Modified Seeded Polymerization.” I: Effect of Monomer/Seed Latex Ratio. Journal of Applied Polymer Science 2004, 92: 607-618.
(13)Gritti F, Leonardis I, Abia J, Guiochon G, Physical properties and structure of fine core–shell particles used as packing materials for chromatography. Journal of Chromatography A 2010, 1217: 3819-3843.
(14)K. Zhang, W. Wu, H. Meng, K. Guo, J.-F. Chen, Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology 2009, 190: 393-400.
(15)T. Yamamoto, M. Nakayama, Y. Kanda, K. Higashitani, Growth mechanism of soap-free polymerization of styrene investigated by AFM. Journal of Colloid and Interface Science 2006, 297: 112-121.
(16)F. Zhang, Y. Ma, L. Liu, and W. Yang, Direct Observations of Three Nucleation/Growth Processes of Charge-Stabilized Dispersion Polymerizations with Varying Water/Methanol Ratios. J. Phys. Chem. 2010, 114: 10970-10978.
(17)N. M. B. Smeets, R. A. Hutchinson, and T. F. L. McKenna, Determination of the Critical Chain Length of Oligomers in Dispersion Polymerization. ACS Macro Lett. 2012, 1: 171-174.
(18)H. Qi, W. Hao, H. Xu, J.Zhang, T. Wang, Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure. Colloid Polym Sci 2009, 287: 243-248.
(19)T. Itoh, K. Fukutani, M. Hino, E. Ihara, K. Inoue, Effects of polystyrene-b-poly(aminomethyl styrene)s as stabilizers on dispersion polymerization of styrene in alcoholic media. Journal of Colloid and Interface Science 2009, 330: 292-297.
(20)S. SHEN, E.D. SUDOL, and M. S. EL-AASSER, Control of Particle Size in Dispersion Polymerization of Methyl Methacrylate. Polymer Chemistry 1993, 31: 1393-1402.
(21)K. Cao, J. Yu, B.G Li, B. F Li, Z. R Pan, Micron-size uniform poly(methyl methacrylate) particles by dispersion polymerization in polar media. Chemical Engineering Journal 2000, 78: 211-215.
(22)H. Qi, W. Hao, H. Xu, J. Zhang, T. Wang, Synthesis of large-sized monodisperse polystyrene microspheres by dispersion polymerization with dropwise monomer feeding procedure. Colloid Polym Sci. 2009, 287: 243-248.
(23)J.W. Kim, K.D. Suh, Highly monodisperse crosslinked polystyrene microparticles by dispersion polymerization. Colloid Polym Sci. 1998, 276: 870-878.
(24)D. G. Yu, J. H. An, J. Y. Bae, S. D. Ahn, S. Y. Kang, and K. S. Suh, Negatively Charged Ultrafine Black Particles of P(MMA-co-EGDMA) by Dispersion Polymerization for Electrophoretic Displays. Macromolecules 2005, 38: 748-7491.
(25)J. S. Song and M. A. Winnik, Cross-Linked, Monodisperse, Micron-Sized Polystyrene Particles by Two-Stage Dispersion Polymerization. Macromolecules 2005, 38: 8300-8307.
(26)K. C. Lee, H. A. Wi, Highly Crosslinked Micron-Sized, Monodispersed Polystyrene Particles by Batch Dispersion Polymerization. Journal of Applied Polymer Science 2010, 115: 297-307.
(27)E. A. Grulke, Suspension Polymerization in Encyclopedia of Polymer Science and Engineering, Wiley 1989, 16: 443-473.
(28)Y Zhang, D Rochefort, Comparison of emulsion and vibration nozzle methods for microencapsulation of laccase and glucose oxidase by interfacial reticulation of poly(ethyleneimine). J Microencapsul. 2010, 27: 703-713.
(29)T. Nakashima , M. Shimizu, M. Kukizaki, Particle control of emulsion by membrane emulsification and its applications. Advanced Drug Delivery Reviews 2000, 45: 47–56.
(30)H Minami, Z Wang, T Yamashita and M Okubo, Thermodynamic analysis of the morphology of monomer-adsorbed, cross-linked polymer particles prepared by the dynamic swelling method and seeded polymerization. Colloid and Polymer Science 2003, 281: 246-252.
(31)M. Okubo, E. Ise, T. Yamashita, Synthesis of Greater Than 10-mm-Sized, Monodispersed Polymer Particles by One-step Seeded Polymerization for Highly Monomer-Swollen Polymer Particles Prepared Utilizing the Dynamic Swelling Method. Journal of Applied Polymer Science 1999, 74, 278-285.
(32)K. C. LEE, H. A. WI, Synthesis of crosslinked polystyrene particles by seeded batch polymerization with monomer absorption. Trans. Nonferrous Met. Soc. China 2011, 21: 153-159.
(33)Q. Zhang, Y. Han, W. Wang, T. Song, J. Chang, A theoretical and experimental investigation of the size distribution of polystyrene microspheres by seeded polymerization. Journal of Colloid and Interface Science 2010, 342: 62-67.
(34)Jin-Woong Kim, Kyung-Do Suh, Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology. Polymer 2000, 41: 6181-6188.
(35)Q. Zhang, Y. Han, W. C. Wang, L. Zhang, J. Chang, Preparation of fluorescent polystyrene microspheres by gradual solvent evaporation method. European Polymer Journal 2009, 45: 550-556.
(36)Jin-Woong Kim, Kyung-Do Suh, Monodisperse, full-IPN Structured Polymer Particles in Micron-Sized Range by Seeded Polymerization. Macromol. Chem. Phys. 2001, 202: 621-627.
(37)W. Yang, W. Ming, J. Hu, X. Lu, S. Fu, Morphological investigations of crosslinked polystyrene microspheres by seeded polymerization. Colloid Polym Sci 1998, 276: 655-661.
(38)E. Unsal, S. T. Camli, S. Senel, A. Tuncel, Chromatographic Performance of Monodisperse–Macroporous Particles Produced by Modified Seeded Polymerization. Journal of Applied Polymer Science 2004, 92: 607-618.
(39)D. Kim, D. Y. Lee, K. Lee, and S. Choe, Effect of Crosslinking Agents on the Morphology of Polymer Particles Produced by One-Step Seeded Polymerization. Macromolecular Research 2009, 17: 250-258.
(40)E. Partouche, D. Waysbort, S. Margel, Surface modification of crosslinked poly(styrene-divinyl benzene) micrometer-sized particles of narrow size distribution by ozonolysis. Journal of Colloid and Interface Science 2006, 294: 69-78.
(41)Kai LI and Harald D. H. Stover, Highly Crosslinked Micron-Range Polymer Microspheres by Dispersion Polymerization of Divinyl benzene. Journal of Polymer Science: Part A Polymer Chemistry 1993, 31: 2473-2479.
(42)S. Shi,L. Zhou,T. Wang,L. Bian,Y. Tang,S.I. Kuroda, Preparation of Raspberry-like Poly(methyl methacrylate) Particles by Seeded Dispersion Polymerization. Journal of Applied Polymer Science 2011, 120: 501-508.
(43)李仲軒,“溶脹法製備具交聯結構之高分子均一粒徑微粒子”, 國立中央大學化學工程與材料工程學系碩士論文(1999)
(44)劉伊祐,“均一粒徑高分子球之製備及其應用”, 國立中央大學化學工程與材料工程學系碩士論文(2011)