跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃裕騫
Yu-Chien Huang
論文名稱: 結合生成式AI於AR合作實驗的環境建置 與成效分析
Development and Impact Assessment of a Generative AI-Enhanced Augmented Reality Collaborative Learning Environment
指導教授: 劉晨鐘
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 129
中文關鍵詞: 擴增實境合作學習生成式AI認知負荷內在動機自我效能
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著擴增實境與人工智慧技術的快速發展,其在科學教育中的應用日益普遍,特別是在協助學生理解如光學等抽象概念上展現顯著成效。本研究旨在建置一套結合HoloLens 2擴增實境頭戴式裝置、實體光學儀器與AI對話系統(ChatGPT與Whisper)的沉浸式學習環境,探討不同學習情境(個別與合作)與AI輔助對國中生在「凸透鏡成像」科學主題上的學習成效、認知負荷與學習動機的影響。研究對象為92名國中一年級學生,依學習條件分為三組:單人無AI組、單人有AI組與合作有AI組,皆使用HoloLens 2進行實驗操作。AI輔助組可透過語音向系統提問,並獲得即時引導與回饋。研究透過光學概念學習單、光學概念測驗前後測、認知負荷與學習動機問卷等工具進行資料蒐集,並輔以錄影與系統互動記錄分析學生的學習歷程。結果顯示,合作有AI組在學習成效上表現最佳,特別在高層次概念應用與遷移學習方面顯著優於其他組別;AI輔助亦能有效提升學生的觀察與概念理解能力。在認知負荷部分,AI輔助組學生在內在認知負荷顯著低於無AI組,顯示系統能有效減輕學生的學習壓力;而在內在動機與自我效能方面則未達顯著差異。錄影分析指出,擴增實境結合AI的學習環境能促進學生釐清科學概念與互動討論,但仍存在資訊不同步與合作品質不一等挑戰。整體而言,本研究建構的AR+AI科學探究系統能有效提升學生對光學概念的理解與應用能力,並促進主動學習與合作探究。研究成果可作為未來發展沉浸式教育科技與設計合作學習活動的重要參考。


    With the rapid development of augmented reality (AR) and artificial intelligence (AI) technologies, their application in science education has become increasingly widespread, particularly in assisting students in understanding abstract concepts such as optics. This study aims to construct an immersive learning environment that integrates the HoloLens 2 AR headset, physical optical instruments, and AI dialogue systems (ChatGPT and Whisper). The study investigates the effects of different learning scenarios (individual and collaborative) and AI assistance on junior high school students’ learning outcomes, cognitive load, and learning motivation in the science topic of “image formation by convex lenses.” The participants were 92 seventh-grade students, divided into three groups based on learning conditions: an individual group without AI, an individual group with AI, and a collaborative group with AI. All groups conducted experimental operations using the HoloLens 2. Students in the AI-assisted groups could ask questions via voice and receive real-time guidance and feedback. Data were collected through an optics concept worksheet, pre- and post-tests on optics concepts, cognitive load and learning motivation questionnaires, along with video recordings and system interaction logs to analyze students’ learning processes. The results showed that the collaborative AI-assisted group achieved the best learning performance, particularly excelling in higher-order concept application and transfer learning compared to the other groups. AI assistance also effectively enhanced students’ observation and conceptual understanding skills. Regarding cognitive load, students in the AI-assisted groups experienced significantly lower intrinsic cognitive load than those without AI, indicating that the system effectively reduced learning pressure. However, no significant differences were found in intrinsic motivation or self-efficacy. Video analysis revealed that the AR+AI learning environment helped students clarify scientific concepts and promoted interactive discussions, though challenges such as information asynchrony and varying collaboration quality remained. Overall, the AR+AI science inquiry system developed in this study effectively enhanced students’ understanding and application of optical concepts while fostering active learning and collaborative inquiry. The findings provide valuable insights for the future development of immersive educational technologies and the design of collaborative learning activities.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與問題 3 1.3 名詞解釋 4 1.3.1 擴增實境(Augmented Reality, AR) 4 1.3.2 合作學習(Collaborative Learning) 4 1.3.3 生成式AI(Generative AI) 4 1.3.4 認知負荷(Cognitive Load) 4 1.3.5 內在動機(Intrinsic Motivation) 5 1.3.6 自我效能(Self-Efficacy) 5 1.4 論文架構 5 第二章 文獻探討 6 2.1 AI輔助學習在教育環境中的應用與影響 6 2.2 合作學習對學習動機與認知負荷的影響 7 2.3 AI與合作學習整合對學生學習成效之影響 9 第三章 系統設計 11 3.1 系統特色 11 3.2 系統介紹 12 3.2.1 實體光學儀器 12 3.2.2 HoloLens 2 13 3.2.3 物理模擬輔助學習應用程式 15 3.2.3.1 基本功能 (光路開關、輔助資訊) 18 3.2.3.2 與Lumen對話 19 3.2.3.3 觀念統整 21 3.2.3.4 Prompt設計 23 3.3 系統架構 24 第四章 研究方法 26 4.1 研究流程 26 4.2 研究對象 27 4.3 實驗活動流程 28 4.4 研究工具 30 4.4.1 光學概念學習單 31 4.4.2 光學概念測驗 31 4.4.3 認知負荷問卷 32 4.4.4 學習動機問卷 33 4.5 資料蒐集與分析 34 4.5.1 學習成效 34 4.5.2 認知負荷 39 4.5.3 學習動機 39 4.5.4 不同情境下之科學探究互動分析 39 第五章 結果與討論 41 5.1 光學概念學習成效 41 5.1.1 光學概念學習單 41 5.1.2 光學概念測驗 46 5.1.2.1 光學概念測驗總分 50 5.1.2.2 光學概念測驗各小題 52 5.1.2.3 光學概念測驗選擇題 55 5.1.2.4 光學概念測驗畫圖題 58 5.2 認知負荷問卷分析 59 5.2.1 內在認知負荷 60 5.2.2 外在認知負荷 62 5.2.3 增生認知負荷 63 5.3 學習動機問卷分析 63 5.3.1 內在動機 63 5.3.2 自我效能 65 5.4 擴增實境環境下之科學探究互動分析 70 5.4.1 案例一 71 5.4.2 案例二 74 5.4.3 案例三 78 第六章 結論與建議 83 6.1 結論 83 6.1.1 在不同情境下學生的光學概念學習成效表現? 83 6.1.2 不同情境是否會影響學生對科學探究的認知負荷? 84 6.1.3 不同情境是否會影響學生對科學探究的學習動機? 84 6.1.4 學生如何在合作學習擴增實境實驗環境中,配合AI輔助進行科學探究? 85 6.2 未來建議 85 參考文獻 87 附錄A 光學概念學習單 92 附錄B 光學概念測驗 95 附錄C 認知負荷問卷 98 附錄D 學習動機問卷(前測) 99 附錄E 學習動機問卷(後測) 101 附錄F AI機器人Prompt 103

    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.
    Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. Educational Technology & Society, 17(4), 133–149.
    Baker, R. S., & Inventado, P. S. (2014). Educational data mining and learning analytics. In J. A. Larusson & B. White (Eds.), Learning analytics: From research to practice (pp. 61–75). Springer. https://doi.org/10.1007/978-1-4614-3305-7_4
    Bandura, A. (1977). Self efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.
    Bewersdorff, A., Hartmann, C., Hornberger, M., Seßler, K., Bannert, M., Kasneci, E., Kasneci, G., Zhai, X., & Nerdel, C. (2025). Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education. Learning and Individual Differences, 118, 102601. https://doi.org/10.1016/j.lindif.2024.102601
    Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature. Frontiers in Psychology, 9, 2086.
    Coban, A., Dzsotjan, D., Küchemann, S., Durst, J., Kuhn, J., & Hoyer, C. (2025). AI support meets AR visualization for Alice and Bob: Personalized learning based on individual ChatGPT feedback in an AR quantum cryptography experiment for physics lab courses. EPJ Quantum Technology, 12(15). https://doi.org/10.1140/epjqt/s40507-025-00310-z
    Duncan, T., Pintrich, P., Smith, D., & Mckeachie, W. (2015). Motivated strategies for learning questionnaire (MSLQ) manual. University of Michigan, National Center for Research to Improve Postsecondary Teaching and Learning. https://doi. org/10.13140/RG. 2.1.2547.6968.
    Egunjobi, D., & Adeyeye, O. J. (2024). Revolutionizing learning: The impact of augmented reality (AR) and artificial intelligence (AI) on education. International Journal of Research Publication and Reviews, 5(10), 1157–1170. https://doi.org/10.55248/gengpi.5.1024.2734
    Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative AI. Business & Information Systems Engineering, 66(1), 111-126. https://doi.org/10.1007/s12599-023-00834-7
    Fishbach, A., & Woolley, K. (2022). The structure of intrinsic motivation. Annual Review of Organizational Psychology and Organizational Behavior, 9, 339–363. https://doi.org/10.1146/annurev-orgpsych-012420-091122
    Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
    Janssen, J., & Kirschner, P. A. (2020). Applying collaborative cognitive load theory to computer supported collaborative learning: towards a research agenda. Education Tech Research Dev, 68, 783-805. https://doi.org/10.1007/s11423-019-09729-5
    Jose, B., Cherian, J., Verghis, A. M., Varghise, S. M., Mumthas, S., & Joseph, S. (2025). The cognitive paradox of AI in education: between enhancement and erosion. Frontiers in Psychology, 16, 1550621. https://doi.org/10.3389/fpsyg.2025.1550621
    Kilde-Westberg, S., Johansson, A., & Enger, J. (2024). Generative AI as a lab partner: A case study. Physics Education, 59(2), 240-252. https://doi.org/10.48550/arXiv.2412.11300
    Kirschner, F., Sweller, J., Kirschner, P. A., & Zambrano, R. (2018). From cognitive load theory to collaborative cognitive load theory. International Journal of Computer-Supported Collaborative Learning, 13(2), 213–233. https://doi.org/10.1007/s11412-018-9277-y
    Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.
    Koumpouros, Y. (2024). Revealing the true potential and prospects of augmented reality in education. Smart Learning Environments, 11, Article 2. https://doi.org/10.1186/s40561-023-00288-0
    Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86(1), 42–78. https://doi.org/10.3102/0034654315581420
    Lampropoulos, G. (2025). Combining artificial intelligence with augmented reality and virtual reality in education: Current trends and future perspectives. Multimodal Technologies and Interaction, 9(2), 11. https://doi.org/10.3390/mti9020011
    Lan, M., Zhou, X. (2025). A qualitative systematic review on AI empowered self-regulated learning in higher education. npj Science of Learning, 10, 21. https://doi.org/10.1038/s41539-025-00319-0

    Ma, Y., Wu, J., Dong, Y., Tang, H., & Ma, X. (2025). Augmented reality navigation system enhances the accuracy of spinal surgery pedicle screw placement: A randomized, multicenter, parallel- controlled clinical trial. Orthopaedic Surgery, 17, 631–643. https://doi.org/10.1111/os.14295
    Mohamed, A.M., Shaaban, T.S., Bakry, S.H., Guillén-Gámez, F.D., & Strzelecki, A. (2025). Empowering the faculty of education students: Applying AI’s potential for motivating and enhancing learning. Innovative Higher Education, 50, 587–609. https://doi.org/10.1007/s10755-024-09747-z
    Nah, F. F.-H., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277-304. https://doi.org/10.1080/15228053.2023.2233814
    Neji, W., Boughattas, N., & Ziadi, F. (2023). Exploring new AI-based technologies to enhance students’ motivation. Issues in Informing Science and Information Technology, 20, 95–110. https://doi.org/10.28945/5149
    Saar, C.C., Klufallah M., Kuppusamy S., Yusof A., Shien L. C., & Han W. S. (2019). BIM integration in augmented reality model. International Journal of Technology, 10(7), 1266–1275. https://doi.org/10.14716/ijtech.v10i7.3651
    Sianaki, O.A., Yousefi, A., Tabesh, A. R., & Mahdavi, M. (2019). Machine learning applications: The past and current research trend in diverse industries. Inventions, 4(1), 8. https://doi.org/10.3390/inventions4010008
    Slavin, R. E. (1980). Cooperative learning. Review of Educational Research, 50(2), 315–342. https://doi.org/10.3102/00346543050002315
    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285. https://doi.org/10.1207/s15516709cog1202_4
    Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53.
    Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316.
    Von Ende, E., Ryan, S., Crain, M.A., & Makary, M.S. (2023). Artificial intelligence, augmented reality, and virtual reality advances and applications in interventional radiology. Diagnostics, 13(5), 892. https://doi.org/10.3390/diagnostics13050892
    Wang, J., & Fan, W. (2025). The effect of ChatGPT on students’ learning performance, learning perception, and higher-order thinking: Insights from a meta-analysis. Humanities and Social Sciences Communications, 12, 621. https://doi.org/10.1057/s41599-025-04787-y
    王維彤(2025)。基於生成式人工智慧與擴增實境之科學實驗學習平台建置與成效分析(碩士論文)。國立中央大學,桃園市。
    戴士凱(2024)。擴增實境科學實驗環境對學生合作科學探究成效之影響(碩士論文)。國立中央大學。臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5x29bh

    QR CODE
    :::