跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李瑪莎
Martha Liliana Valencia Otero
論文名稱: Measurement of Carbon Fluxes as Function of Geomagnetic Latitude and Observation of Z>2 Trapped Nuclei in the South Atlantic Anomaly with the Alpha Magnetic Spectrometer on the International Space Station
指導教授: 張元翰
Yuan-Hann Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 136
中文關鍵詞: 碳通量地磁緯度被俘獲原子核南大西洋異常區
外文關鍵詞: Carbon Flux, Geomagnetic Latitude, Trapped Nuclei, South Atlantic Anomaly
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1912年維克托·赫斯(Victor Hess)的發現以來,宇宙射線的探測在推動我們理解其起源、傳播以及加速機制方面發揮了重要作用。多年來,宇宙射線研究在粒子物理學和天體物理學領域中扮演了關鍵角色,也對太陽圈的研究作出了重要貢獻。宇宙射線在研究太陽調節引起的時間通量變化、粒子在地球磁層中的傳播,以及諸如范艾倫輻射帶或南大西洋異常區(SAA)等地球磁場結構方面有著重要的意義。

    阿爾法磁譜儀(AMS-02)是一個安裝在國際空間站(ISS)上的高能物理實驗裝置。自2011年安裝以來,AMS-02一直持續運行,收集宇宙射線事件數據,從而測量宇宙射線的性質和通量。AMS合作團隊已經發布了銀河系宇宙射線(GCR)不同種類原子核的通量測量結果,以及部分原子核隨時間變化的數據。

    在本論文中,我們展示了碳作為地磁緯度函數的測量結果。特別是,研究地磁剛度截止以下的碳能譜,發現了一群位於SAA北部區域的Z > 2的被俘獲原子核。這項研究首次觀察到了比氦更重的被俘獲原子核,最重至氖,剛度範圍從1GV到5GV。


    Since its discovery by Victor Hess in 1912, the detection of cosmic rays has been instru-
    mental in advancing our understanding of their origin, propagation, and acceleration
    mechanisms throughout the galaxy. Over the years, cosmic ray research has played
    a crucial role not only in particle physics and astrophysics but also in heliospheric
    studies. Cosmic rays significantly contribute to the study of temporal flux variations
    due to solar modulation, particle propagation in the Earth’s magnetosphere, and geo-
    magnetic field structures such as the Van Allen radiation belts or the South Atlantic
    Anomaly (SAA).
    The Alpha Magnetic Spectrometer (AMS-02) is a high-energy physics experiment
    onboard the International Space Station (ISS). Since its installation in 2011, AMS-02
    has been continuously operating, collecting cosmic ray events data that allows the
    measurement of CRs properties and fluxes. The AMS collaboration has presented the
    flux measurement of Galactic Cosmic Ray (GCR) nuclei of various species, as well as
    the temporal variation of a few of them. In this thesis, we present the measurement of
    carbon as a function of geomagnetic latitude. In particular, the study of the carbon
    spectra below the geomagnetic rigidity cut-off has led to the identification of a popu-
    lation of Z>2 trapped nuclei in the northern region of the SAA. This study represents
    a first-time observation of trapped nuclei heavier than Helium extending up to Neon,
    with rigidities above 1GV and up to 5GV.

    Abstract. . . . . . iv 摘要. . . . . . . . . v Acknowledgements. . . vi 1 Cosmic Rays 1 1.1 A Brief History of Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Cosmic Ray Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Cosmic Ray Detection . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 The Spectrum of Cosmic Rays . . . . . . . . . . . . . . . . . . . 4 1.2.3 Composition of Cosmic Rays . . . . . . . . . . . . . . . . . . . . 6 1.3 From Data to Cosmic Ray Models . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Cosmic Ray Propagation in the Galaxy . . . . . . . . . . . . . . 7 1.3.2 Acceleration of Cosmic Rays . . . . . . . . . . . . . . . . . . . . 13 1.3.3 Origin of Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . 14 2 Cosmic Ray Propagation in the Earth’s Magnetic Field 16 2.1 Solar Activity and Solar Modulation . . . . . . . . . . . . . . . . . . . 16 2.2 The Earth’s Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Magnetosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2 The Earth’s Radiation Belts . . . . . . . . . . . . . . . . . . . . 19 2.3 Representation of the Geomagnetic Field . . . . . . . . . . . . . . . . . 20 2.3.1 The Dipole Field . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 External current systems . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Particle’s Motion in the Earth’s Magnetic Field . . . . . . . . . . . . . 24 2.5 The Adiabatic Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 The First Adiabatic Invariant . . . . . . . . . . . . . . . . . . . 29 2.5.2 The Second Adiabatic Invariant . . . . . . . . . . . . . . . . . . 31 2.5.3 The Third Adiabatic Invariant . . . . . . . . . . . . . . . . . . . 33 2.5.4 The L-shell value . . . . . . . . . . . . . . . . . . . . . . . . . . 33 v 3 The Alpha Magnetic Spectrometer 36 3.1 The AMS-02 layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 The Permanent Magnet . . . . . . . . . . . . . . . . . . . . . . 37 3.1.2 The Silicon Tracker . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.3 The Anti-coincidence Counters (ACC) . . . . . . . . . . . . . . 44 3.1.4 The Time of Flight (TOF) . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 The Transition Radiation Detector (TRD) . . . . . . . . . . . . 46 3.1.6 The Ring Imaging Cherenkov Detector (RICH) . . . . . . . . . 48 3.1.7 The Electromagnetic Calorimeter (ECAL) . . . . . . . . . . . . 50 3.2 The AMS-02 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.1 Fast Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.2 Level 1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3 The AMS-02 Operations in Orbit . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 The Instrument Monitoring and Calibration . . . . . . . . . . . 54 3.3.2 The AMS-02 Data Acquisition (DAQ) . . . . . . . . . . . . . . 56 4 Carbon Flux Measurement in terms of Geomagnetic Latitude 58 4.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Exposure Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Event Counts and Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3.2 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . 62 4.3.3 Event Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 Effective Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4.1 Acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4.2 Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.4.3 Effective Acceptance . . . . . . . . . . . . . . . . . . . . . . . . 97 4.5 Carbon Flux and Unfolding . . . . . . . . . . . . . . . . . . . . . . . . 100 4.5.1 Raw Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.5.2 Unfolding Procedure and Flux . . . . . . . . . . . . . . . . . . . 102 5 Observation of Z>2 Trapped Nuclei in the SAA 105 5.1 AMS in the SAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 Pre-selection Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3 Backtracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.4 Trapped Nuclei Properties . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.4.1 Pitch Angle Distribution . . . . . . . . . . . . . . . . . . . . . . 109 5.4.2 Rigidity Distribution . . . . . . . . . . . . . . . . . . . . . . . . 110 5.4.3 Charge Distribution . . . . . . . . . . . . . . . . . . . . . . . . 111 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Conclusions 113 Bibliography 123

    [1] H. Becquerel, ´Emission de radiation nouvelles par l’uranium m´etallique, Comptes
    Rendus Physique 122 (1986) 1086.
    [2] T. Wulf, Observations on the radiation of high penetration power on the Eiffel
    tower, Physikalische Zeitschrift 11(811), (1910) 2155-304.
    [3] A. Gockel, On the invasive radiation in the atmosphere, Physikalische Zeitschrift
    10 (1909) 845-847.
    [4] V. Hess. On the observations of the penetrating radiation during seven balloon
    flights, arXiv:1808.02927 (2018).
    [5] Y. Sekido and H. Elliot, Early history of cosmic ray studies: Personal reminiscences
    with old photographs, Springer Science and Business Media 118 (2012).
    [6] W. Kolhoster, Messungen der durchdringenden Strahlung im Freiballon in grosseren
    Hohen, Physikalische Zeitschrift 14 (1913) 1153-1156.
    [7] R. A. Millikan and I. S. Bowen, High-frequency rays of cosmic origin I. Sounding
    balloon observations at extreme altitudes, Physical Review 27(4) (1926) 353.
    [8] C. D. Anderson, The positive electron, Physical Review, 43(6) (1933) 491.
    [9] S. H, Neddermeyer and C. D. Anderson, Note on the nature of cosmic-ray particles,
    Physical Review 51(10) (1937) 884.
    [10] C. M. G. Lattes, G. P. S. Occhialini and C. F. Powell, Observations on the tracks
    of slow mesons in photographic emulsions, Nature 160(4067) (1947) 486-492.
    [11] P. A. M. Dirac, Quantised singularities in the electromagnetic field. Proceedings
    of the Royal Society of London. Series A, Containing Papers of a Mathematical
    and Physical Character, 133(821) (1931) 60-72.
    [12] B. Rossi, Interpretation of cosmic-ray phenomena, Reviews of Modern Physics
    20(3) (1948) 537.
    115
    [13] PAMELA Collaboration, et al., Ten years of PAMELA in space, La Rivista del
    Nuovo Cimento 40 (2017) 43-522.
    [14] S. Torii, P. S. Marrocchesi, et al., The CALorimetric Electron Telescope (CALET)
    on the International Space Station, Advances in Space Research 64(12) (2019)
    2531-2537.
    [15] J. Chang, G. Ambrosi, Q. An, et al., The DArk Matter Particle Explorer mission,
    Astroparticle Physics 95 (2017) 6-24.
    [16] D. Gora, The Pierre Auger Observatory: review of latest results and perspectives,
    Universe 4(11) (2018) 128.
    [17] E. W. Apel, J. C. Arteaga, A. Badea, et al., The KASCADE-grande experiment,
    Nuclear Instruments and Methods in Physics Research Section A: accelerators,
    spectrometers, detectors and associated equipment 620(2-3) (2014) 202-216.
    [18] N. Budnev, I. Astapov, N. Barbashina, et al., The TAIGA experiment: From
    cosmic-ray to gamma-ray astronomy in the Tunka valley, Nuclear Instruments and
    Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
    and Associated Equipment 845 (2017) 330-333.
    [19] T. K. Gaisser, R. Engel and E. Resconi, Cosmic rays and particle physics, Cam-
    bridge University Press (2016).
    [20] K. A. Eriksen, et al., Evidence for particle acceleration to the knee of the cosmic
    ray spectrum in Tycho’s supernova remnant, The Astrophysical Journal Letters
    728(2) (2011) L28.
    [21] D. Caprioli, Cosmic-ray acceleration and propagation, arXiv:1510.07042 (2015).
    [22] J. R. H¨orandel, The composition of cosmic rays at the knee. American Institute
    of Physics (AIP) Conference Proceedings 1516(1) (2013) 185-194.
    [23] G. Giacinti, M. Kachelrieß, and D. V. Semikoz, Escape model for Galactic cosmic
    rays and an early extragalactic transition, Physical Review D 91(8) (2015) 083009.
    [24] S. Mollerach and E. Roulet, A scenario for the Galactic cosmic rays between
    the knee and the second-knee, Journal of Cosmology and Astroparticle Physics
    2019(03) (2019) 017.
    [25] R. U. Abbasi, et al., Observation of the ankle and evidence for a high-energy break
    in the cosmic ray spectrum, Physics Letters B 619(3-4) (2005) 271-280.
    116
    [26] J. Abraham, et al., Correlation of the highest-energy cosmic rays with nearby
    extragalactic objects, Science 318(5852) (2007) 938-943.
    [27] HRFE Collaboration, et al., First observation of the Greisen-Zatsepin-Kuzmin
    suppression, Physical review letters 100(10) (2008) 101101.
    [28] A. Aab, et al, Inferences on mass composition and tests of hadronic interactions
    from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Ob-
    servatory, Physical Review D 96(12), (2017) 122003.
    [29] R. Hillier, Gamma ray astronomy, Oxford Studies in Physics, Clarendon Press
    (1984).
    [30] B. T. Draine, Physics of the interstellar and intergalactic medium (Vol. 19),
    Princeton University Press (2010).
    [31] E. Vanhollebeke, M. A. T. Groenewegen and L. Stellar populations in the Galactic
    bulge-Modelling the Galactic bulge with TRILEGAL., Astronomy & Astrophysics
    498(1) (2009) 95-107.
    [32] D. J. Majaess, Concerning the Distance to the Center of the Milky Way and its
    Structure., arXiv preprint 1002.2743 (2010).
    [33] L. S. Sparke and J. S. Gallagher III, Galaxies in the universe: an introduction.
    Cambridge University Press (2007).
    [34] R. Cowsik, et al., Steady state of cosmic-ray nuclei—Their spectral shape and path
    length at low energies, Physical Review 158(5) (1967) 1238.
    [35] R. Cowsik and E. W. Wilson, The nested leaky-box model for Galactic cosmic
    rays, In Proceedings from the 14th International Cosmic Ray Conference 2 (OG
    Session) (1975) 659.
    [36] F. C. Jones, et al., The modified weighted slab technique: models and results, The
    Astrophysical Journal 547(1) (2001) 264.
    [37] A. W. Strong, et al., GALPROP: Code for cosmic-ray transport and diffuse emis-
    sion production, Astrophysics Source Code Library (2010) 1010.028.
    [38] G. Di Bernardo, et al., Unified interpretation of cosmic ray nuclei and antiproton
    recent measurements, Astroparticle Physics, 34(5) (2010) 274-283.
    [39] D. Maurin, USINE: a new public cosmic ray propagation code Basic phenomenol-
    ogy, sample results, and a bit of USINE, In Cosmic Rays for Particle and Astropar-
    ticle Physics (2011) 420-434.
    117
    [40] M. Aguilar, et al., Precision measurement of the boron to carbon flux ratio in
    cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the
    international space station, Physical review letters 117(23) (2016) 231102.
    [41] R. Cowsik and T. Madziwa-Nussinov, Spectral intensities of antiprotons and the
    nested leaky-box model for cosmic rays in the Galaxy, The Astrophysical Journal
    827(2) (2016) 119.
    [42] N. E. Yanasak, et al., Measurement of the secondary radionuclides 10Be, 26Al, 36Cl,
    54Mn, and 14C and implications for the galactic cosmic-ray age, The Astrophysical
    Journal 563(2) (2001) 768.
    [43] E. Fermi, On the origin of the cosmic radiation, Physical review 75(8) (1949)
    1169.
    [44] L. A. Anchordoqui, Ultrahigh energy cosmic rays: Facts, myths, and legends,
    arXiv:1104.0509 (2011).
    [45] M. Aguilar, et al., Properties of a new group of cosmic nuclei: results from the
    alpha magnetic spectrometer on sodium, aluminum, and nitrogen, Physical review
    letters 127(2) (2021) 021101.
    [46] W. Baade and F. Zwicky, Cosmic rays from super-novae, Proceedings of the Na-
    tional Academy of Sciences 20(5) (1934) 259-263.
    [47] I. G. Usoskin, A history of solar activity over millennia, Living Reviews in Solar
    Physics 14(1) (2017) 3.
    [48] B. C. Low, Solar activity and the corona, Solar Physics 167 (1996) 217-265.
    [49] M. S. Potgieter, Solar modulation of cosmic rays, Living Reviews in Solar Physics
    10 (2013) 1-66.
    [50] B. A. Buffett, Earth’s core and the geodynamo, Science 288(5473) (2000) 2007-
    2012.
    [51] M. Schulz, The magnetosphere, Geomagnetism (1991).
    [52] J. A. Van Allen, et al., Observation of high intensity radiation by satellites 1958
    Alpha and Gamma, Journal of Jet Propulsion (28(9) (1958) 588-592.
    [53] M. Schulz and L. J. Lanzerotti, Particle diffusion in the radiation belts, Springer
    Science and Business Media 7 (2012).
    [54] D. N. Baker, et al., A long-lived relativistic electron storage ring embedded in
    Earth’s outer Van Allen belt, Science 340(6129) (2013) 186-190.
    118
    [55] R. Ecoffet, Overview of in-orbit radiation induced spacecraft anomalies, Institute
    of Electrical and Electronics Engineers (IEEE) Transactions on Nuclear Science
    60(3) (2013) 1791-1815.
    [56] M. Tafazoli, A study of on-orbit spacecraft failures, Acta Astronautica 64(2-3)
    (2009) 195-205.
    [57] J. Restier-Verlet, et al., Radiation on earth or in space: what does it change?,
    International Journal of Molecular Sciences 22(7) (2021) 3739.
    [58] J. C. Mcphee and J. B. Charles. Human health and performance risks of space
    exploration missions: evidence reviewed by the NASA human research program, US
    National Aeronautics & Space Administration 3405 (2009).
    [59] F. A. Cucinotta, et al., Space radiation and cataracts in astronauts, Radiation
    research 156(5) (2001) 460-466.
    [60] R. Reynolds, et al., Cancer incidence and mortality in the USA Astronaut Corps,
    1959–2017, Occupational and Environmental Medicine 78 (2021) 869-875.
    [61] P. Alken, E. Th´ebault, C. D. Beggan, et al., International Geomagnetic Ref-
    erence Field: the thirteenth generation, Earth Planets Space 73(49) (2021).
    https://doi.org/10.1186/s40623-020-01288-x
    [62] M. Walt, Introduction to geomagnetically trapped radiation, Cambridge Atmo-
    spheric and Space Science Series 10 (1994).
    [63] N. Y. Ganushkina, M. W. Liemohn and S. Dubyagin, Current systems in the
    Earth’s magnetosphere, Reviews of Geophysics 56(2) (2018) 309-332.
    [64] H. E. Koskinen and E. K. Kilpua, Physics of Earth’s radiation belts: Theory and
    observations, Springer Nature (2022) 54.
    [65] J. G. Roederer and H. Zhang, Dynamics of magnetically trapped particles, Astro-
    physics and Space Science Library 403 (2014) 72.
    [66] M. Regi, ULF power fluctuations in the solar-wind parameters and their relation-
    ship with the relativistic electron flux at the geosynchronous orbit, Il Nuovo Cimento
    100.285 (2016) 39.
    [67] M. Aguilar, et al., The Alpha Magnetic Spectrometer (AMS) on the International
    Space Station: Part I–results from the test flight on the space shuttle, Physics
    Reports 366(6) (2002) 331-405.
    119
    [68] K. L¨ubelsmeyer, et al., Upgrade of the Alpha Magnetic Spectrometer (AMS-02)
    for long-term operation on the International Space Station (ISS), Nuclear Instru-
    ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
    Detectors and Associated Equipment 654(1) (2011) 639-648.
    [69] M. Aguilar, et al., The Alpha Magnetic Spectrometer (AMS) on the international
    space station: Part II—Results from the first seven years, Physics reports 894
    (2021) 1-116.
    [70] G. Ambrosi, et al., Alignment of the AMS-02 silicon Tracker, In 33rd International
    Cosmic Ray Conference (2013) 570.
    [71] P. Saouter, Nuclei identification with the AMS-02 silicon tracker and measurement
    of cosmic ray nuclei fluxes, Doctoral Thesis (2014).
    [72] S. Natale and S. Schael, The AMS-02 tracker alignment system: design and per-
    formance, In Proceedings of the 31st International Cosmic Ray Conference ( L´od´z)
    (2009).
    [73] J. L. Bazo, et al., In-flight performance of the AMS-02 silicon tracker, Journal of
    Physics: Conference Series, IOP Publishing 409(1) (2013) 012032.
    [74] J. van Es, et al., AMS-02 tracker thermal control cooling system commissioning
    and operational results, In 43rd International Conference on Environmental Sys-
    tems (2013) 3389.
    [75] Y. M. Yu, et al., Design and application of thermal mass flow meter in space,
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
    Spectrometers, Detectors and Associated Equipment 950 (2020) 163003.
    [76] Y. M. Yu, et al., Testing of CO2 on-orbit fill/refill for the upgraded tracker thermal
    pump system in the Alpha Magnetic Spectrometer, Applied Thermal Engineering
    178 (2020) 115558.
    [77] B. Alpat, et al., The internal alignment and position resolution of the AMS-02
    silicon tracker determined with cosmic-ray muons, Nuclear Instruments and Meth-
    ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
    Associated Equipment 613(2) (2010) 207-217.
    [78] G. Ambrosi, et al., AMS-02 Track reconstruction and rigidity measurement, 33rd
    International Cosmic Ray Conference (2013).
    [79] Y. Jia, et al., Nuclei charge measurement by the Alpha Magnetic Spectrometer sil-
    icon tracker, Nuclear Instruments and Methods in Physics Research Section A: Ac-
    celerators, Spectrometers, Detectors and Associated Equipment 972 (2020) 164169.
    120
    [80] P. von Doetinchem, et al., The Anticoincidence Counter System of AMS-02,
    arXiv:0906.1068 (2009).
    [81] T. Bruch and W. Wallraff, The Anti-Coincidence Counter shield of the AMS
    tracker, Nuclear Instruments and Methods in Physics Research Section A: Acceler-
    ators, Spectrometers, Detectors and Associated Equipment 572(1) (2007) 505-507.
    [82] V. Bindi, et al., Calibration and performance of the AMS-02 time of flight detector
    in space, Nuclear Instruments and Methods in Physics Research Section A: Accel-
    erators, Spectrometers, Detectors and Associated Equipment 743 (2014) 22-29.
    [83] A. Basili, The TOF-ACC flight electronics for the fast trigger and time of flight of
    the AMS-02 cosmic ray spectrometer, Nuclear Instruments and Methods in Physics
    Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
    ment 707 (2013) 99-113.
    [84] V. Bindi, et al., The AMS-02 time of flight (TOF) system: construction and
    overall performances in space, Proceedings of the 33rd International Cosmic Rays
    Conference, Rio Janeiro, Brazil (2013).
    [85] T. Kirn, et al., The AMS-02 TRD on the international space station, Nuclear In-
    struments and Methods in Physics Research Section A: accelerators, spectrometers,
    detectors and associated equipment, 706 (2013) 43-47.
    [86] T. Kirn, The AMS-02 transition radiation detector, Nuclear Instruments and
    Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
    and Associated Equipment 581(1-2) (2007) 156-159.
    [87] M. S. Krafczyk, A precision measurement of the cosmic ray positron fraction on
    the international space station, Massachusetts Institute of Technology, Doctoral
    Thesis (2016).
    [88] H. Gast, et al., Identification of cosmic-ray positrons with the transition radiation
    detector of the AMS experiment on the International Space Station, 33rd Interna-
    tional Cosmic Ray Conference (2013).
    [89] F. Giovacchini, et al., Performance in space of the AMS-02 RICH detector, Nu-
    clear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
    trometers, Detectors and Associated Equipment 766 (2014) 57-60.
    [90] H. Liu, The RICH detector of AMS-02: 5 years of operation in space, Nuclear
    Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
    eters, Detectors and Associated Equipment 876 (2017) 5-8.
    121
    [91] F. Giovacchini, et al., Space application: The AMS RICH, Nuclear Instruments
    and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-
    tors and Associated Equipment 970 (2020) 163657.
    [92] G. Gallucci, Performance of the AMS-02 Electromagnetic Calorimeter in Space,
    In Journal of Physics: Conference Series 587(1) (2015) 012028. IOP Publishing.
    [93] C. Adloff, et al., The AMS-02 lead-scintillating fibers Electromagnetic Calorime-
    ter, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
    Spectrometers, Detectors and Associated Equipment 714 (2013) 147-154.
    [94] S. Di Falco, Performance of the AMS-02 electromagnetic calorimeter in space,
    33rd International Cosmic Ray Conference (2013) 562.
    [95] A. Basili, et al., The TOF-ACC flight electronics for the fast trigger and time of
    flight of the AMS-02 cosmic ray spectrometer, Nuclear Instruments and Methods in
    Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
    Equipment 707 (2013) 99-113.
    [96] A. Kounine. AMS experiment on the International Space Station, American Phys-
    ical Society Northwest Section Meeting Abstracts 13 (2011) G1-002.
    [97] A. Lebedev. The AMS-02 Electronics System, In 29th International Cosmic Ray
    Conference (ICRC29) 3 (2005) 377.
    [98] B. Bertucci, et al., The AMS-02 detector operation in space, Proceedings of Science
    (PoS) EPSHEP2011 67 (2011).
    [99] S. Agostinelli, et al., GEANT4–a simulation toolkit, Nuclear Instruments and
    Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
    and Associated Equipment 506(3) (2003) 250-303.
    [100] J. Allison, et al., Geant4 developments and applications, Institute of Electrical
    and Electronics Engineers (IEEE) Transactions on nuclear science 53(1) (2006)
    270-278.
    [101] J. Allison, et al., Recent developments in Geant4, Nuclear Instruments and Meth-
    ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
    Associated Equipment 835 (2016) 186-225.
    [102] J. D. Sullivan, Geometric factor and directional response of single and multi-
    element particle telescopes, Nuclear Instruments and methods 95(1) (1971) 5-11.
    122
    [103] E. Fehlberg, New high-order Runge-Kutta formulas with step size control for
    systems of first-and second-order differential equations, Journal of Applied Mathe-
    matics and Mechanics/Zeitschrift f¨ur Angewandte Mathematik und Mechanik 44
    (S1 S1) (1964) T17-T29.
    [104] J. R. Cummings, et al., New evidence for geomagnetically trapped anomalous
    cosmic rays, Geophysical research letters 20(18) (1993) 2003-2006.
    [105] V. Pierrard, S. Benck, E. Botek, et al., Proton flux variations during Solar En-
    ergetic Particle Events, minimum and maximum solar activity, and splitting of the
    proton belt in the South Atlantic Anomaly, Journal of Geophysical Research: Space
    Physics 128(5) (2023) e2022JA031202.
    [106] V. Pierrard, G. Lopez Rosson, K. Borremans, et al., The energetic particle tele-
    scope: first results, Space Science Reviews 184 (2014) 87-106.
    [107] A. Bruno, et al., Trapped protons in SAA measured by the PAMELA experiment,
    Proceedings of the 32nd International Cosmic Ray Conference, Institute of High
    Energy Physics 6 (2011) 82-85.

    QR CODE
    :::