| 研究生: |
安迪亞 HENY ANDYA |
|---|---|
| 論文名稱: |
對接銲接之熱傳與應力分析 Thermal and Mechanical Analysis of Butt Welding |
| 指導教授: |
林志光 博士
Chih-Kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 本研究利用有限元素法 、殘留等效應力 、殘留張應力 |
| 外文關鍵詞: | Finite Element Method, von-Misses Stress, Residual Stress |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究利用有限元素法建立一套應用於大型銲接件溫度與應力分佈計算之電腦輔助工程分析技術。殘留張應力是決定銲接件結構強度的關鍵因素,而本研究建立之分析技術將可預測最大的殘留張應力發生之位置。此外,本研究亦透過銲接實驗之溫度量測驗結果與模擬分析結果進行比對,以確認該有限元素模型之有效性。希望本研究建立之有限元素模型可以協助設計大型銲接件之製程參數並改善銲接件結構之強健性。
本研究使用雙橢圓熱源模型作為有限元素分析之熱源輸入方式。有限元素分析模型計算所求得之溫度場分佈與實驗量測結果比對,可以發現在各量測點,二者之溫度變化趨勢相近,特別是模擬結果與其中一組實驗結果相當吻合,因此確認此有限元素分析模型之有效性。在銲接與冷卻過程結束後,熔融區之等效應力值遠大於熱影響區外銲接件邊緣之等效應力值。模擬結果顯示最大殘留等效應力值發生於熔融區,其大小約為294 MPa,此殘留應力值大於降伏強度290 MPa,因此塑性變形可能發生於此高殘留應力區。銲接件內殘留應力值之大小隨著與熔融及熱影響區之距離增加而下降。對垂直於銲道方向之正向應力而言,較大的殘留應力集中在銲道起始與結束的區域,且為壓應力。對平行於銲道方向之正向應力,在銲道區有較大的殘留張應力,然而隨著距離銲道越遠,殘留張應力會逐漸變小,甚至在靠近銲接件邊緣地帶轉變為殘留壓應力。
ABSTRACT
The aim of this study is using finite element method (FEM) to develop a computer aided engineering (CAE) technique for calculating temperature and stress distributions in large-plate welding. From the stress distribution, the maximum tensile residual stress can be predicted which is the most critical parameter in determining the structural integrity of large-plate weldments. Experimental measurements of temperature are carried out to validate the FEM simulation. Hopefully, the developed CAE technique and validated FEM model could help plan a better welding process for large-plate welding and improve its structural robustness.
A double ellipsoidal volumetric heat source is employed in the FEM model to simulate large-plate welding. The simulated variation of temperature at selected positions is compared with experimental measurements to verify the effectiveness of the FEM modeling developed. The thermal history at selected positions shows a similar trend between simulations and experiments. In particular, simulation results of temperature variation concur with one of the three given experiments. At the melt pool area after the welding and cooling process, von-Mises equivalent stress is much larger than that at the edge of plate. The maximum residual stress (in von-Mises equivalent form) is located at the melt pool area and has a value of 294 MPa which is close to the yield strength (290 MPa). Therefore, plastic deformation is expected to take place around this highly stressed region. The magnitude of residual stress decreases with increasing distance from the melt pool area and heat affected zone. Higher compressive residual stress is concentrated at the starting and ending regions on the welding path, for the normal stress component (xx) in the direction perpendicular to the welding path. For the normal stress component (yy) in the direction parallel to the welding path, larger tensile residual stress is located at the melt pool area and it becomes compressive stress at the region away from the welding path.
REFERENCES
1. S. Kou, Welding Metallurgy, 2nd Edition, Wiley-Interscience, Hoboken, New Jersey, USA, 2003.
2. Y. Ueda, H. Murzkawa, and N. Ma, Welding Deformation and Residual Stress Prevention, Elsevier, Waltham, USA, 2012.
3. N. N. Rykalin, Calculation of Heat Flow in Welding, translated by Z. Paley and C. M. Adams, Jr., Document 212-350-74, International Institute of Welding, London, UK, 1974.
4. M. J. Attarha and I. S. Far, “Study on Welding Temperature Distribution in Thin Welded Plates Through Experimental Measurements and Finite Element Simulation,” Journal of Materials Processing Technology, Vol. 211, pp. 688–694, 2011.
5. Pressure Vessel, Ninesights, https://ninesights.ninesigma.com, accessed on January 19, 2018.
6. Tank Design Service, Indiamart, https://www.indiamart.com, accessed on March 6, 2018.
7. Heat Exchanger, Wikipedia, https://en.wikipedia.org/wiki/Heat_exchanger, accessed on March 15, 2018.
8. D. Deng, Y. Zhou, T. Bi, and X. Liu, “Experimental and Numerical Investigations of Welding Distortion Induced by CO2 Gas Arc Welding in Thin-Plate Bead-on Joints,” Materials & Design, Vol. 52, pp. 720-729, 2013.
9. S. Murugan, S. K. Rai, P. V. Kumar, T. Jayakumar, B. Raj, and M. S. C. Bose, “Temperature Distribution and Residual Stresses Due to Multipass Welding in Type 304 Stainless Steel and Low Carbon Steel Weld Pads,” International Journal of Pressure Vessels and Piping, Vol. 78, pp. 307-317, 2001.
10. S. K. Bate, D. Green, and D. Buttle, A Review of Residual Stress Distribution in Welded Joints for Defect Assessment of Offshore Structures, HSE Books, AEA Tech PLc, Liverpool, UK, 1997.
11. Q. Lin, J. Chen, and H. Chen, “Possibility of Inducing Compressive Residual Stresses in Welded Joints of SS400 Steels,” Journal of Material Science & Technology, Vol. 17, pp. 661-663, 2001.
12. Y. C. Lin and C. P. Chou, “Residual Stress Due to Parallel Heat Welding in Small Specimens of Type 304 Stainless Steel,” Materials Science and Technology, Vol. 8, pp. 837-840, 2013.
13. C. Weisman, Welding Handbook: Fundamentals of Welding, 7th Edition, Vol. 1, American Welding Society, Miami, Florida, USA, 1976.
14. D. Rosenthal, “The Theory of Moving Sources of Heat and Its Application to Metal Treatments,” Transactions of the ASME, Vol. 68, pp. 849-866, 1946.
15. R. R. Rykalin, “Energy Sources in Welding,” Houdrement Lecture, International Institude of Welding, pp. 1-23, 1974.
16. V. Pavelic, R. Tanbakuchi, O. A. Uyehara, and P. S. Myers, “Experimental and Computed Temperature Histories in Gas Tungsten Arc Welding of Thin Plates,” Welding Journal Research Supplement, Vol. 48, pp. 295s-305s, 1969.
17. D. Radaj, “Welding Temperature Fields,” Chapter 2 in Heat Effect of Welding, Springer, Heidelberg, Germany, 1992.
18. J. Goldak, A. Chakravarti, and M. Bibby, “A New Finite Element Model for Welding Heat Sources,” Metallurgical Transactions B, Vol. 15, pp. 299-305, 1984.
19. A. M. Malik, E. M. Qureshi, N. Ullah Dar, and I. Khan, “Analysis of Circumferentially Arc Welded Thin-Walled Cylinders to Investigate the Residual Stress Fields,” Thin-Walled Structures, Vol. 46, pp. 1391-1401, 2008.
20. D. Deng and H. Murakawa, “Numerical Simulation of Temperature Field and Residual Stress in Multi-Pass Welds in Stainless Steel Pipe and Comparison with Experimental Measurements,” Computational Materials Science, Vol. 37, pp. 269-277, 2006.
21. Y. Ueda and T. Yamakawa, “Analysis of Thermal Elastic-Plastic Stress and Strain During Welding by Finite Element Method,” Transactions of the Japan Welding Society, Vol. 2, pp. 186-196, 1971.
22. A. Capriccioli and P. Frosi, “Multipurpose ANSYS FE Procedure for Welding Processes Simulation,” Fusion Engineering and Design, Vol. 84, pp. 546-553, 2009.
23. X. Shan, C. M. Davies, T. Wangsdan, N. P. O'Dowd, and K. M. Nikbin, “Thermo-Mechanical Modelling of a Single-Bead-on-Plate Weld Using the Finite Element Method, ” International Journal of Pressure Vessels and Piping, Vol. 86, pp. 110-121, 2009.
24. A. A. Bhatti, Z. Barsoum, and M. Khurshid, “Development of A Finite Element Simulation Framework for the Prediction of Residual Stresses in Large Welded Structures,” Computers and Structures, Vol. 133, pp. 1-11, 2014.
25. T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 7th ed., John Wiley & Sons, Inc., Hoboken, USA, 2011.
26. T. Bajpei, H. Chelladurai, and M. Z. Ansari, “Mitigation of Residual Stresses and Distortions in Thin Aluminium Alloy GMAW Plates Using Different Heat Sink Models,” Journal of Manufacturing Processes, Vol. 22, pp. 199-210, 2016.
27. M. H. Sadd, Elasticity Theory, Applicatons, and Numerics, 3th ed., Elsevier, Inc., Boulevard, USA, 2014.
28. D. L. Logan, A First Course in the Finite Element Method, 5th ed., Global Engineering, Stamford, CT, USA, 2012.
29. Solid 90, Sharcnet, https://www.sharcnet.ca/Software/Ansys, accessed on March 29, 2018.
30. W. Rui, R. Sherif, S. Hisashi, M. Hidekazu, and J. Zhang, “Numerical and Experimental Investigations of Welding Deformation,” Transaction of JWRI, Vol. 37, pp. 79-90, 2008.