跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊欣哲
Sin Che Yang
論文名稱: 聖嬰現象與赤道大氣克耳文波之可能關聯
指導教授: 潘貞杰
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 赤道大氣克耳文波聖嬰現象對流準兩年震盪
外文關鍵詞: Equatorial Atmospheric Kelvin waves, El Niño, convection, Quasi-biennial oscillation
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用了1979年至2015年歐洲中心中程數值天氣預報以及福爾摩沙衛星三號之大氣溫度場及風場資料分析赤道大氣克耳文波,並使用二維離散傅立葉轉換將克耳文波以水平波數及週期分解,短週期之克耳文波(5、8及12天週期)具有較長之垂直波長不受平流層風場之限制而上傳,但長週期之克耳文波除了16天週期之克耳文波可於準兩年震盪西風相位即將結束時上傳外,19及24天週期之克耳文波僅在東風時活躍,此外,上傳的克耳文波在東風轉西風之零風場線下發生波破碎,使得振幅變大,波動能量部分傳遞至背景風場。
      根據NOAA衛星的出長波輻射資料以及TRMM衛星的降水資料顯示,自印尼地區移動至中太平洋的東向深對流區則增強了16公里至18公里高度的克耳文波,在聖嬰事件期間,雖然對流型態有所改變,但仍然增強了克耳文波,且僅發生於風場為東風或西風相位即將結束之時期,2010年的案例則因克耳文波上傳至40公里高度導致準兩年震盪風場的由東風快速轉換為西風,但其他在聖嬰事件年份的案例無法僅能傳至25公里至30公里高,因此影響程度有限。


    The atmosphere temperature and zonal wind data from 1979 to 2015 which offered by European Centre for Medium-Range Weather Forecasts and FORMOSAT-3 data are used to analysis the atmospheric equatorial Kelvin waves. Than we use the two dimension fast discrete Fourier transform (2D-FFT) to separate the Kelvin waves to different zonal wavenumber and period. Short period Kelvin waves (5, 8 and 12 days) have more longer vertical wavelength so that they can propagate upward without restriction by background zonal wind. But long period Kelvin waves only 16 days Kelvin waves can upward propagate during the end of the Quasi-biennial oscillation (QBO) westerly phase, 19 and 24 days Kelvin waves only active when during QBO easterly phase. Otherwise, upward propagation Kelvin waves will break below the zero wind line (easterly wind to westerly wind) and let the amplitude be larger. The part of energy will transfer to the zonal wind.
    NOAA-OLR (outgoing longwave radiation) TRMM-rainfall data indicate the eastward moving deep convection zone which moving from Indonesia to Central Pacific ocean enhanced the Kelvin waves at 16-18 km. During the El Niño Southern Oscillation (ENSO) period, although the feature of deep convection zone have been changed, but still enhance the Kelvin waves. And the phenomenon happen when the end of the QBO westerly phase or easterly phase. The Kelvin waves upward propagate to 40 km and let the direction of QBO turn fast from easterly to westerly in 2010 case. In other cases, the Kelvin waves only can propagate to 25-30 km, so they cause little influence to QBO.

    一、 緒論.....................................................1 1-1 文獻回顧與理論發展.............................................1 1-2 研究動機.......................................................4 1-3 論文大綱.......................................................4 二、資料簡介與克耳文波分析方法................................5 2-1 ECMWF溫度及風場資料..........................................5 2-2 NOAA-出長波輻射...............................................6 2-3 TRMM-降水資料.................................................6 2-4 克耳文波分析方法與比對.........................................7 三、赤道大氣克耳文波之生成與向上傳播........................... 14 3-1 克耳文波振幅的分布特性 ................................ ......14 3-2 克耳文波之生成與大尺度對流活動...............................19 3-3 克耳文波向上傳播之條件.......................................35 3-3-1 克耳文波之垂直波長計算.....................................37 3-3-2 垂直波長與風場..............................................39 3-4 本章小結......................................................41 四、聖嬰現象與赤道大氣克耳文波之可能關聯........................42 4-1 ENSO 3.4 指標 ............................... ................42 4-2 聖嬰現象與克耳文波................................ ...........44 4-3 聖嬰事件與準兩年震盪風場......................... ...........47 五、結論............................... ...........................49 附錄............................... ...............................51 參考文獻 ............................... ..........................57  

    Alexander, S., T. Tsuda, Y. Kawatani, and M. Takahashi (2008), Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions, Journal of Geophysical Research: Atmospheres, 113(D24).
    Andrews, D. G., J. R. Holton, and C. B. Leovy (1987), Middle atmosphere dynamics, Academic press.
    Baldwin, M., L. Gray, T. Dunkerton, K. Hamilton, P. Haynes, W. Randel, J. Holton, M. Alexander, I. Hirota, and T. Horinouchi (2001), The quasi‐biennial oscillation, Reviews of Geophysics, 39(2), 179-229.
    Das, U., and C. Pan (2013), Strong Kelvin wave activity observed during the westerly phase of QBO–a case study, Ann. Geophys, 31, 581-590.
    Das, U., and C. Pan (2016), Equatorial atmospheric Kelvin waves during El Niño episodes and their effect on stratospheric QBO, Science of The Total Environment, 544, 908-918.
    Dee, D., S. Uppala, A. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. Balmaseda, G. Balsamo, and P. Bauer (2011), The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597.
    Dunkerton, T. J. (1997), The role of gravity waves in the quasi‐biennial oscillation, Journal of Geophysical Research: Atmospheres, 102(D22), 26053-26076.
    Dunkerton, T. J., and F. X. Crum (1995), Eastward propagating 2-to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation, J. Geophys. Res, 100(25), 781-725.
    Ern, M., and P. Preusse (2009), Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere, Geophysical Research Letters, 36(21).
    Hayashi, Y. (1982), Space-time spectral analysis and its applications to atmospheric waves, J. Meteor. Soc. Japan, 60(1), 156-171.
    Holton, J. R., and G. J. Hakim (2012), An introduction to dynamic meteorology, Academic press.
    Holton, J. R., and R. S. Lindzen (1972), An updated theory for the quasi-biennial cycle of the tropical stratosphere, Journal of the Atmospheric Sciences, 29(6), 1076-1080.
    Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy (2009), Convectively coupled equatorial waves, Reviews of Geophysics, 47(2).
    Lindzen, R. S. (2003), The interaction of waves and convection in the tropics, Journal of the atmospheric sciences, 60(24), 3009-3020.
    Maruyama, T., and Y. Tsuneoka (1988), Anomalously short duration of the easterly wind phase of the QBO at 50 hPa in 1987 and its relationship to an El Niño event, Journal of the Meteorological Society of Japan, 66(4), 629-634.
    Matsuno, T. (1966), Quasi-geostrophic motions in the equatorial area, J. Meteor. Soc. Japan, 44(1), 25-43.
    Maury, P., F. Lott, L. Guez, and J.-P. Duvel (2013), Tropical variability and stratospheric equatorial waves in the IPSLCM5 model, Climate dynamics, 40(9-10), 2331-2344.
    Randel, W. J., and F. Wu (2005), Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements, Journal of Geophysical Research: Atmospheres, 110(D3).
    Ratnam, M. V., G. Tetzlaff, and C. Jacobi (2004), Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite, Journal of the Atmospheric Sciences, 61(13), 1610-1620.
    Roundy, P. E. (2008), Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO, Journal of the Atmospheric Sciences, 65(4), 1342-1359.
    Salby, M. L., D. L. Hartmann, P. L. Bailey, and J. C. Gille (1984), Evidence for equatorial Kelvin modes in Nimbus-7 LIMS, Journal of the atmospheric sciences, 41(2), 220-235.
    Tsai, H.-f., T. Tsuda, and Y. Aoyama (2004), Equatorial Kelvin Waves Observed with GPS Occultation Measurements, paper presented at CHAMP and SAC-C), J. Meteorol. Soc. Jpn, 82, 397-406.
    Tsuda, T., M. V. Ratnam, P. T. May, M. J. Alexander, R. A. Vincent, and A. MacKinnon (2004), Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment), Journal of Geophysical Research: Atmospheres, 109(D20).
    Tsuda, T., Venkat Ratnam, M., Kozu, T., & Mori, S. (2006). Characteristics of 10-day Kelvin wave observed with radiosondes and CHAMP/GPS occultation during the CPEA campaign (April-May, 2004). J. Meteorol. Soc. Jpn, 84, 277-293.
    Wallace, J. M., and V. Kousky (1968), Observational evidence of Kelvin waves in the tropical stratosphere, Journal of the Atmospheric Sciences, 25(5), 900-907.
    Wang, B. (2003), Kelvin waves, in Encyclopedia of Meteorology, edited by J. Holton, pp.1062–1067, Academic Press, New York.
    Wheeler, M., and G. N. Kiladis (1999), Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain, Journal of the Atmospheric Sciences, 56(3), 374-399.
    Yanai, M., and M. Murakami (1970), Spectrum analysis of symmetric and antisymmetric equatorial waves, J. Meteor. Soc. Japan, 48, 331-346.
    Yang, G.-Y., and B. Hoskins (2013), ENSO impact on Kelvin waves and associated tropical convection, Journal of the Atmospheric Sciences, 70(11), 3513-3532.

    QR CODE
    :::