跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫一イ凡
I-Fan Sun
論文名稱: 利用遞迴式小波模糊類神經網路於電動轉向系統定位控制之研究
A Study of Position Control on Electrical Power Steering System using Recurrent Wavelet Fuzzy Neural Network
指導教授: 林法正
Faa-Jeng Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 119
中文關鍵詞: 六相永磁同步馬達電動轉向系統小波轉換遞迴式模糊類神經網路滑動模態控制器李亞普諾夫穩定性
外文關鍵詞: Six-phase permanent synchronous motor, electric power steering system, wavelet transform, recurrent fuzzy neural network, sliding-mode controller, Lyapunov stability
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究目的為研製以數位訊號處理器為基礎之遞迴式小波模糊類神經網路之智慧型滑動模態控制,並應用於一基於六相永磁同步馬達之電動轉向系統,以期能改進其追隨效能與載具穩定性。首先,本研究將利用拉格朗日力學推導電動轉向系統的動態數學方程式。接著,以此方程式為基礎,設計一滑動模態控制器作為電動轉向系統之位置控制器。由於電動轉向系統是一個非線性與時變的系統,控制的準確性將深受整個電動轉向
    系統的參數變化、外力干擾與摩擦力…等不確定項的影響。因此在實際應
    用上,不確定項的上界難以精確取得,而間接導致滑動模態控制成效容易
    趨於保守,也容易造成其控制抖動之缺陷。有鑒於此,本研究提出了具有
    遞迴式小波模糊類神經網路作為不確定項估測器的智慧型滑動模態控制策
    略來改善此現象。其中,遞迴式小波模糊類神經網路能適時地估測當下因
    參數變化與外來干擾所產生之不確定項的大小,並加入強健控制器來消除
    近似誤差。其適應性線上學習法則則是藉由李亞普諾夫理論與泰勒展開式
    推導而得。最後,本研究以32 位元浮點運算數位訊號處理器完成所提出的電動轉向定位系統,且利用實驗結果來驗證所提出智慧型控制策略於電動轉向系統之定位成效與可行性。


    The objective of this thesis is to develop a digital signal processor (DSP) based intelligent control of a six-phase permanent magnet synchronous motor (PMSM) drive system for electric power steering (EPS) system. First of all, the
    dynamic mathematical model of the EPS system is derived by Lagrangian dynamics. Since the EPS system is a nonlinear and time-varying system, the control accuracy is very sensitive to the parameter variations and external disturbances. Therefore, a sliding mode controller (SMC) is developed for the position control of the EPS system. However, the upper bound of the uncertainties is difficult to obtain in advance and the choice of high switching control gain in SMC may cause undesired chattering phenomenon. Hence, an intelligent SMC with a recurrent wavelet fuzzy neural network (ISMC-RWFNN) is proposed in this study, where the RWFNN is adopted as an uncertainty estimator to overcome the aforementioned disadvantage of SMC. Also, a robust compensator is employed to eliminate the estimation error. Furthermore, adaptive learning algorithms for the online training of the RWFNN are derived using the Lyapunov theorem and Taylor series. Finally, the proposed ISMC-RWFNN to control the six-phase PMSM drive system for the EPS system is implemented in a 32-bit floating-point digital signal processor (DSP), TMS320F28335, and the effectiveness is verified by some experiments.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文大綱 6 1.4 論文貢獻 7 第二章 六相永磁同步馬達驅動系統之週邊硬體介紹 8 2.1 前言 8 2.2 TMS320F28335數位訊號處理器簡介 9 2.3 TMS320F28335週邊功能介紹 12 2.3.1 脈波寬度調變模組 12 2.3.2 中斷訊號 14 2.3.3 類比/數位轉換模組 15 2.3.4 正交編碼器脈衝模組 16 2.3.5 串列周邊介面模組 18 2.4 以DSP為基礎的六相永磁同步馬達控制系統 20 2.4.1 TMS320F28335控制卡 20 2.4.2 TMS320F28335介面板 21 2.4.3 週邊電路擴充控制板 22 2.5 週邊擴充控制板之電路 23 2.5.1 ADC電壓準位轉換電路 23 2.5.2 脈波寬度調變電壓準位轉換電路 24 2.5.3 過電流保護電路 25 2.5.4 數位/類比轉換電路 25 2.5.5 編碼器之解碼電路 25 第三章 六相永磁同步馬達驅動系統 28 3.1 前言 28 3.2 六相永磁同步馬達 30 3.3 六相永磁同步馬達數學動態模型 30 3.4 座標轉換之電壓及電磁轉矩方程式 32 3.5 空間向量脈波寬度調變 35 3.6 六相永磁同步馬達控制架構 47 第四章 基於六相永磁同步馬達之電動轉向系統 50 4.1 前言 50 4.2 電動轉向系統 50 4.3 拉格朗日力學之背景簡介 52 4.4 電動轉向系統之數學動態模型推導 53 4.5 滑動模態控制器 56 4.6 實驗結果與討論 61 第五章 以遞迴式小波模糊類神經網路控制器來估測滑動模態控制力之不確定項 68 5.1 前言 68 5.2 類神經網路與模糊邏輯 69 5.3小波轉換 72 5.4遞迴結構 74 5.5 從滑動模態控制到智慧型網路 75 5.6 遞迴式小波模糊類神經網路架構 77 5.7 結合遞迴式小波模糊類神經網路估測器之智慧型滑動模態控制的線上學習法則與穩定性分析 81 5.8 實驗結果與討論 88 第六章 結論與未來展望 93 6.1 結論 93 6.2 未來展望 95 附錄 96 李亞普諾夫方程式之P與Q求解流程 96 參考文獻 97 作者簡歷 104

    [1] 葉智榮,“先進轉向系統發展趨勢介紹”,財團法人車輛研究測試中心,http://goo.gl/eVGhBG
    [2] A. E. Cetin, M. A. Adli, D. E. Barkana, and H. Kucuk, “Implementation and development of an adaptive steering-control system,” IEEE Trans. Veh. Technol., vol. 59, no. 1, pp. 75–83, Jan. 2010.
    [3] X. Chen, T. Yang, X. Chen, and K. Zhou, “A generic model-based advanced control of electric power-assisted steering systems,” IEEE Trans. Control Syst. Technol., vol. 16, no. 6, pp. 1289–1300, Nov. 2008.
    [4] A. Marouf, M. Djemaï, C. Sentouh, and P. Pudlo, “A new control strategy of an electric-power-assisted steering system,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3574-3589, Oct. 2012.
    [5] M. Parmar and J. Y. Hung, “A sensorless optimal control system for an automotive electric power assist steering system,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 290–298, Apr. 2004.
    [6] M. S. Mahmoud and M. F. Emzir, “Unknown-input estimator-based controller design of electric power-assisted steering system,” IET Control Theory and Appl., vol. 6, no. 16, pp. 2485-2492, Nov. 2012.
    [7] P. Setlur, J. R. Wagner, D. M. Dawson, and D. Braganza, “A trajectory tracking steer-by-wire control system for ground vehicles,” IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 76–85, Jan. 2006.
    [8] K. Nam, H. Fujimoto, and Y. Hori, “Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 1972–1985, Jun. 2012.
    [9] H. Wang, Z. Man, W. Shen, Z. Cao, J. Zheng, J. Jin, and D. M. Tuan, “Robust control for steer-by-wire systems with partially known dynamics,” IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2003-2015, Nov. 2014.
    [10] R. Gregor, F. Barrero, S. L. Toral, M. J. Durán, M. R. Arahal, J. Prieto, and J. L. Mora, “Predictive-space vector PWM current control method for asymmetrical dual three-phase induction motor drives,” IET Electric Power Appl., vol. 4, no. 1, pp. 26-34, Jan. 2010.
    [11] E. Levi, R. Bojoi, F. Profumo, H. A. Toliyat, and S. Williamson, “Multiphase induction motor drives—A technology status review,” IET Electric Power Appl., vol. 4, no. 1, pp. 489–516, Jul. 2007.
    [12] W. Cao, B. C. Mecrow, G. J. Atkinson, J.W. Bennett, and D. J. Atkinson, “Overview of electric motor technologies used for more electric aircraft (MEA),” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3523–3531, Sep. 2012.
    [13] H. Amimeur, D. Aouzellag, R. Abdessemed, and K. Ghedamsi, “Sliding mode control of a dual-stator induction generator for wind energy conversion systems,” Int. J. Electr. Power Energy Syst., vol. 42, no. 1, pp. 60–70, Nov. 2012.
    [14] S. Green, D. J. Atkinson, A. G. Jack, B. C. Mecrow, and A. King, “Sensorless operation of a fault tolerant PM drive,” IEE Proc. Electric Power Appl., vol. 150, no. 2, pp. 117–125, Mar. 2003.
    [15] B. Štumberger, G. Štumberger, A. Hamler, M. Trlep, M. Jesenik, and V. Goričan, “Increasing of output power capability in a six-phase flux-weakened permanent magnet synchronous motor with a third harmonic current injection,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3343–3345, Sep. 2003.
    [16] K. D. Hoang, Y. Ren, Z. Q. Zhu, and M. Foster, “Modified switching-table strategy for reduction of current harmonics in direct torque controlled dual-three-phase permanent magnet synchronous machine drives,” IET Electric Power Appl., vol. 9, no.1, pp. 10-19, Jan. 2015.
    [17] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Autom. Control, vol. 22, no. 2, pp. 212–222, Apr. 1977.
    [18] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [19] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747–5762, Dec. 2013.
    [20] R. J. Wai and L. C. Shih, “Design of voltage tracking control for DC-DC boost converter via total sliding-mode technique,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2502–2511, Jun. 2011.
    [21] C. J. Fallaha, M. Saad, H. Y. Kanaan, and K. Al-Haddad, “Sliding-mode robot control with exponential reaching law,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 600–610, Feb. 2011.
    [22] M. A. Fnaiech, F. Betin, G. A. Capolino, and F. Fnaiech, “Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 354–364, Jan. 2010.
    [23] C. F. Hsu, “Intelligent total sliding-mode control with dead-zone parameter modification for a DC motor driver,” IET Control Theory & Appl., vol. 8, no. 11, pp. 916-926, Jul. 2014.
    [24] F. J. Lin, Y. C. Hung, and S. Y. Chen, “FPGA based computed force control using Elman neural network for linear ultrasonic motor,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1238–1253, Apr. 2009.
    [25] C. C. Tsai, H. C. Huang, and S. C. Lin, “Adaptive neural network control of a self-balancing two-wheeled scooter,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1420–1428, Jul. 2009.
    [26] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3872–3879, Oct. 2009.
    [27] T. Orlowska-Kowalska, M. Dybkowski, and K. Szabat, “Adaptive slide-mode neural-fuzzy control of the two-mass induction motor drive without mechanical sensors,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 553–564, Feb. 2010.
    [28] Y. X. Liao, J. H. She, and M. Wu, “Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2704–2714, Jul. 2009.
    [29] Y. Li, H. L. Wei, and S. A. Billings, “Identification of time-varying systems using multi-wavelet basis functions,” IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 656–663, May 2011.
    [30] J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes, “Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 137–144, Feb. 2011.
    [31] M. A. S. K. Khan and M. A. Rahman, “A novel neuro wavelet based self-tuned wavelet controller for IPM motor drives,” IEEE Trans. Ind. Appl., vol. 46, no. 3, pp. 1194–1203, Jun. 2010.
    [32] C. H. Lu, “Wavelet fuzzy neural networks for identification and predictive control of dynamic systems,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 3046–3058, Jul. 2011.
    [33] C. F. Hsu, “Adaptive fuzzy wavelet neural controller design for chaos synchronization,” Expert Syst. Appl., vol. 38, no. 8, pp. 10475–10483, Feb. 2011.
    [34] M. Shahriari-kahkeshi and F. Sheikholeslam, “Adaptive fuzzy wavelet network for robust fault detection and diagnosis in non-linear systems,” IET Control Theory & Appl., vol. 8, no. 15, pp. 1487-1498, Oct. 2014.
    [35] C. F. Juang and J. S. Chen, “A recurrent fuzzy-network-based inverse modeling method for a temperature system control,” IEEE Trans. Syst., Man, Cybern., C, Appl. and Rev., vol. 37, no. 3, pp. 410–417, May 2007.
    [36] S. H. Park and S. I. Han, “Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller,” IET Control Theory & Appl., vol. 5, no. 12, pp. 1397-1417, Aug. 2011.
    [37] R. J. Wei and Y. W. Lin, “Adaptive moving-target tracking control of a vision-based mobile robot via a dynamic Petri recurrent fuzzy neural network,” IEEE Trans. Fuzzy Syst., vol. 21, no. 4, pp. 688-701, Aug. 2013.
    [38] T. Mai and Y. Wang, “Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot,” IEEE Trans. Control Syst. Technol., vol. 22, no. 5, pp. 1973-1982, Sep. 2014.
    [39] S. Ganjefar and M. Tofighi, “Single-hidden-layer fuzzy recurrent wavelet neural network: Applications to function approximation and system identification,” Information Science, vol. 294, pp. 269-285, Feb. 2015.
    [40] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
    [41] 蔡孟庭,“智慧型錯誤容忍控制六相永磁同步馬達驅動系統之開發”,碩士論文,中央大學電機系,民國一百零一年。
    [42] 阮開駿,“應用於電動轉向系統之智慧型控制六相永磁同步馬達驅動系統”,碩士論文,中央大學電機系,民國一百零二年。
    [43] 楊凱捷,“應用於遞迴式迷糊類神經小腦模型網路之錯誤容忍控制六相永磁同步馬達定位驅動系統”,碩士論文,中央大學電機系。民國一百零三年
    [44] 許尚文,“六相永磁式同步電動機之設計與控制”,碩士論文,台灣科技大學電機 台灣科技大學電機系,民國九十五年。
    [45] 王俊超,“六相永磁式同步電動機驅器之分析與設計”,碩士論文,台灣科技大學電機系,民國九十四年。
    [46] 吳泰廷,“六相永磁式同步電動機驅系統之故障後控制策略”,碩士論文,台灣科技大學電機系,民國九十八年。
    [47] S. Anwar and L. Chen, “An analytical redundancy-based fault detection and isolation algorithm for a road-wheel control subsystem in a steerby-wire system,” IEEE Trans. Vehicul. Technol., vol. 56, no. 5, pp. 2859-2869, 2007.
    [48] D. Morin, Introduction to Classical Mechanics. Cambridge University Press, 2008.
    [49] Wikipedia, Lagrangian mechanics. [Online] Available: http://en.wikipedia.org/wiki/Lagrangian_mechanics
    [50] F. J. Lin, Y. C. Hung, J. C. Hwang, and M. T. Tsai, “Fault-tolerant control of a six-phase motor drive system using a Takagi–Sugeno–Kang type fuzzy neural network with asymmetric membership function,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3557–3572, Jul. 2013.
    [51] F. J. Lin and P. H. Shen, “Robust fuzzy neural network sliding-mode control for two-axis motion control system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1209–1225, Jun. 2006.
    [52] J. D. Lee, S. Khoo, and Z. B. Wang, “DSP-Based Sliding-Mode control for Electromagnetic-Levitation Precise-Position system,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 817-827, May 2013.
    [53] R. J. Wai, K. L. Chuang, and J. D. Lee, “On-Line Supervisory Control Design for Maglev Transportation System via Total Sliding-Mode Approach and Particle Swarm Optimization,” IEEE Trans. Autom. Control, vol. 55, no. 7, pp. 1544-1559, Jul. 2010.
    [54] F. F. M. El-Sousy, “Adaptive Dynamic Sliding-Mode Control System Using Recurrent RBFN for High-Performance Induction Motor Servo Drive,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 1922-1936, Nov. 2013.
    [55] F. J. Lin and P. H. Chou, “Robust Fuzzy-neural-network sliding-mode control for two-axis motion control system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1209-1225, Jun. 2006.
    [56] L. X. Wang, A course in fuzzy systems and control. Prentice-Hall, 1996.
    [57] F. J. Lin and R. J. Wai, “Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive,” IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 102-115, Feb. 2001.
    [58] F. J. Lin and C. C. Lee, “Adaptive backstepping control for linear induction motor drive to track periodic references,” IEE Proc. Electric Power Appl., vol. 147, no. 6, pp. 449-458, Nov. 2000.
    [59] F. J. Lin, C. K. Chang, and P. K. Huang, “FPGA-Based Adaptive Backstepping Sliding-Mode Control for Linear Induction Motor Drive,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1222-1231, Jul. 2007.
    [60] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems. Addison-Wiley, 2005
    [61] 王進德,『類神經網路與模糊控制理論入門與應用』,台北市,全華科技圖書股份有限公司,2008年。
    [62] A. Pollack, “Fuzzy Computer Theory: How to Mimic the Mind?” in New York Times, April 2nd, 1989. [Online] Available: http://goo.gl/lhrmRm
    [63] C. K. Chui, An Introduction to Wavelets. San Diego: Academic Press, 1992. ISBN 0-12-174584-8.
    [64] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme,” Mathematische Annalen, vol. 69, no. 3, pp 331–371, 1910.
    [65] G. Zweig, R. Lipes, and J. R. Pierce, “The cochlear compromise,” Journal of the Acoustical Society of America, vol. 59, no. 4, pp. 975–982, 1976. DOI:10.1121/1.380956
    [66] Ingrid Daubechies: Ten Lectures on Wavelets, SIAM 1992, ISBN: 978-0-89871-274-2
    [67] G. D. Wu and P. H. Huang, “A Maximizing-Discriminability-Based Self-Organizing Fuzzy Network for Classification Problems,” IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 362-373, Apr. 2010
    [68] M. Pratama, S. Anavatti, and E. Lughofer, “pClass, An Effective Classifier to Streaming Examples,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 369-386, Apr. 2015.

    QR CODE
    :::