跳到主要內容

簡易檢索 / 詳目顯示

研究生: 伊斯納
Sofri Ayu Isnaini
論文名稱: 臺灣海峽海洋塑料垃圾的輸運
Transportation of Plastic Marine Debris
指導教授: 錢樺
Hwa Chien
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 235
中文關鍵詞: 反向追蹤頻散海洋塑料垃圾可能來源河流排放
外文關鍵詞: backward-track, dispersion, plastic marine debris, possible sources, river discharge
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用拉格朗日粒子追踪演算法來表示海洋塑料碎片(PMD)的傳輸,發現
    台灣海峽的季節變化傳輸相互對應。預計可能軌跡的結果可用於推估源處的PMD 量。
    首先,透過模擬216 個質點平均值並使用TORI(台灣海洋科技研究所)高頻(HF)岸
    基雷達測流系統所監測之海流資料(2015-2017),可以推測PMD 可能的來源。因澎湖群
    島位於台灣海峽中部,因此被選為PMD目的地。
    首次結果是由波浪運動引起的海洋混合和斯托克斯漂流是應用高頻雷達模擬PMD
    軌跡的不確定性因素。採用頻散係數(K)來表示水平混合效率。利用2015-2017 年模
    擬結果,K 的平均大小在春季為1.06 × 10−4,夏季為3.66 × 10−5,秋季為2.13 × 10−4,
    冬季為1.87 × 10−4。這表示地面風速在PMD 傳輸中的重要性,高頻雷達數據能夠顯現
    出這些現象。根據數據結果,使用高頻雷達的模擬結果可以求得誤差。因高頻雷達的
    數據存在不確定性,造成每個PMD 軌跡不準確,因此我們從機率角度採用係集平均結
    果表示PMD軌跡。2015-2017 年模擬結果,PMD傳輸模式的百分比是東海(I 區)4.27
    %,中國大陸沿岸(區域II)3.72%,南海(區域III)19.38%,台灣SW(區域IV)
    17.88%,台灣西(區域V)48.87%,台灣西北(區域VI)5.86%。台灣西(V 區)在
    澎湖群島生產PMD 的可能性較高,尤其是雲林海岸。通過冬季的中國沿岸流(CCC)
    導致的區域I(來自東海,冬季機率較高)和III(來自南中國海,夏季機率較高)之間
    的機率,可以確定顯著的季節性偏差。夏季北上台灣暖流(TWC)。
    結果的第二部分是PMD 數量的計算。只有在來源處的PMD 資訊已知時才能使用
    這些軌跡。可以透過PMD 來源總數乘以對應機率來計算數量。利用Jambeck 方法
    (2015)以及每月河流排放,計算出從河流中流入海洋的PMD 量。澎湖群島的PMD
    季節變化,可以透過長江(進入東海),湄公河(進入南海)和彭亨河(進入南海)
    的河流流量計算。結果表示,長江夏季東海海域PMD 最高,而湄公河和彭亨河秋季
    PMD最高。較高的PMD 是由較高的河流流量引起的,受季風期間降雨模式的影響。


    In the study of Taiwan Strait, a lagrangian particle tracking algorithms were applied to
    characterize the transport of Plastic Marine Debris (PMD) which correspond to the seasonal
    variability transportation in Taiwan Strait. The results of estimation probable trajectories could
    be used to estimate the PMD amount at the sources. First, the estimation of PMD possible
    sources could be obtained by simulating an ensemble average over 216 floating elements and
    using the remote sensing surface ocean current data provided by TORI (Taiwan Ocean Research
    Institute) High Frequency (HF) coastal radar network from 2015-2017. The Penghu Islands
    were located in the middle of Taiwan Strait were chosen as PMD destination for example.
    The results of first discussion are, ocean mixing and stokes drift that induced by wave
    motion, were the main factors in uncertainty of applying HF coastal radar to simulate PMD
    trajectories. The Dispersion Coefficient (K) was adopted to represent the horizontal mixing
    efficiency. Based on the simulation results over 3 years, the average magnitude of K revealed
    1.06 × 10−4 in spring, 3.66 × 10−5 in summer, 2.13 × 10−4 in fall, and 1.87 × 10−4 winter.
    The periodic oscillation of dispersion coefficients could be identified, with an average period
    of 4 days. It denoted that the surface wind speed plays important role in the PMD transport and
    the HF data is capable to reflect these phenomena. Based on data, the simulation result error
    using HR radar was known. The uncertainty of HF radar data for each PMD trajectories might
    inaccurate, so we used probability viewpoint based on the results of ensemble average. Based
    on simulation results for three years, the percentage of PMD transport patterns was East China
    Sea (region I) 4.27%, Cross-Strait Mainland China (region II) 3.72%, South China Sea (region
    III) 19.38%, Taiwan SW (region IV) 17.88%, Taiwan West (region V) 48.87%, and Taiwan
    NW (region VI) 5.86%. Taiwan West (region V) has a higher possibility to produce PMD in
    Penghu Islands, especially Yunlin Coast. The significant seasonal bias could be identified by
    comparing the probability between region I (from East China Sea, higher probability in winter)
    and III (from South China Sea, high probability in summer) due to prevailing southward China
    Coastal Current (CCC) in winter and northward Taiwan Warm Current (TWC) in summer.
    The second part of the results is the calculation of PMD amount. These trajectories
    information could only be used if the PMD at source point was known already. The amount
    could be calculated by multiplying the probability with the total amount of PMD at the sources.
    ii
    Monthly river discharge was applied to find the amount of PMD released from riverine using
    Jambeck’s method (2015). PMD seasonal variability in the Penghu Islands were calculated
    based on Yangtze River (into East China Sea), Mekong River (into South China Sea), and
    Pahang River (into South China Sea). The results showed that Yangtze river produced the
    highest PMD during summer to East China Sea, while Mekong and Pahang River released the
    highest PMD during fall. This higher PMD was induced by higher riverine discharge which
    was influenced by rainfall pattern during monsoon.

    ABSTRACT .i 摘要.iii ACKNOWLEDGMENTiv TABLE OF CONTENTS v LIST OF TABLESvii LIST OF FIGURESviii CHAPTER I INTRODUCTION 1 1.1 Motivation.. 1 1.2 Literature Review .. 2 1.2.1 Introduction of Plastic Marine Debris.. 2 1.2.2 Distribution of Plastic Marine Debris 4 1.2.3 Estimation of Plastic Marine Debris Amount .. 5 1.2.4 Relation Between Rainfall and the Amount of Plastic Marine Debris. 7 1.2.5 Ocean Current Circulation in Taiwan Strait.. 9 1.2.6 Calculation of Plastic Marine Debris Transportation. 11 1.2.7 Dispersion of Trajectories 11 1.2.8 Observation of Stokes Drift. 12 1.3 The Producing of Plastic Marine Debris in Some Countries. 13 1.3.1 Plastic Marine Debris in Mainland China 13 1.3.2 Plastic Marine Debris in Indonesia.. 13 1.3.3 Plastic Marine Debris in Vietnam 14 1.3.4 Plastic Marine Debris in France 14 1.4 Scope of Present Study . 15 CHAPTER II RESEARCH METHODOLOGY .. 16 2.1 Study Area .. 16 2.2 Data Collection . 16 2.2.1 High Frequency (HF) coastal radar . 16 2.2.2 Sea Surface Temperature (SST) 22 2.2.3 Ocean Wind . 23 2.3 Estimation of Mismanaged Plastic Waste (MMPW) in the River.. 23 2.4 Backward Track Simulation .. 24 2.4.1 Simulation Design 24 2.4.2 Classification of Possible Source . 28 2.5 Sampling Method. 29 2.6 Data Processing 29 2.6.1 Trajectories Simulation.. 29 2.6.2 Calculation of Dispersion Coefficient in Taiwan Strait 34 CHAPTER III RESULT AND DISCUSSION 35 3.1 Application HF Coastal Radar in Trajectories Simulation . 35 3.1.1 Trajectories Prediction Using HF Radar Surface Currents: Monte Carlo Simulations of Prediction Uncertainties (Ulman et al., 2006) .. 37 3.1.2 Application of High Frequency Radar in Hazard Management (Mal Heron et al., 2016) 38 3.1.3 Eularian and Lagrangian Correspondence of HF Radar and Surface Drifter Data (I. I. Rypina et al., 2014).. 39 3.2 Dispersion of Trajectories Simulation in Taiwan Strait .. 39 3.2.1 Dispersion Coefficient in Taiwan Strait 41 3.2.2 Map of Dispersion Coefficient in Taiwan Strait .. 58 3.3 Seasonal Variability of Possible Source Plastic Marine Debris.. 63 3.4 Validation Simulation Result and Beach Clean Up Data 69 3.5 Monthly Mismanaged Plastic Waste from the River. 72 3.4.1 Yangtze River. 72 3.4.2 Mekong River. 75 3.4.3 Pahang River .. 78 CHAPTER IV CONCLUSIONS. 83 REFERENCES .. 86 APPENDIX A – SIMULATION RESULT .. 90 APPENDIX B – DISPERSION COEFFICIENT 170 APPENDIX C – AUTOCORRELATION.. 191 APPENDIX D – BEACH CLEAN UP DATA.. 211T

    “Bahagian Pengurusan Sumber Air dan Hidrologi Jabatan Pengairan dan Saliran-Malaysia”.
    h2o.water.gov.my. 2019.Web.16 May. 2019. <http://h2o.water.gov.my/v2/index.cfm?
    linkKu=fail/sdata.cfm&menu=2&bahasa=#bahasa#>
    Barnes, D. K. A., Galgani, F., Thompson, R. C., Barlaz, M., Barnes, D. K. A., Galgani,
    F., …Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global
    environments Accumulation and fragmentation of plastic debris in global environments.
    (June). https://doi.org/10.1098/rstb.2008.0205
    Boerger, C. M., Lattin, G. L., Moore, S. L., &Moore, C. J. (2010). Plastic ingestion by
    planktivorous fishes in the North Pacific Central Gyre. Marine Pollution Bulletin,
    60(12), 2275–2278. https://doi.org/10.1016/j.marpolbul.2010.08.007
    Bremer, T. S.Van Den, &Breivik, Ø. (2017). Stokes drift.
    Chen, J., Chen, J., Finlayson, B. L., Wei, T., Sun, Q., Webber, M., &Li, M. (2016). Changes
    in monthly flows in the Yangtze River , China - With special reference to the Three
    Gorges Dam Changes in monthly flows in the Yangtze River , China – With special
    reference to the Three Gorges Dam. JOURNAL OF HYDROLOGY, 536(October 2017),
    293–301. https://doi.org/10.1016/j.jhydrol.2016.03.008
    Clarke, A. J., & Van Gorder, S. (2018). The Relationship of Near-Surface Flow , Stokes Drift
    and the Wind Stress. Journal of Geophysical Research, 4680–4692.
    https://doi.org/10.1029/2018JC014102
    Dai, Z., Fagherazzi, S., Mei, X., &Gao, J. (2016). Geomorphology Decline in suspended
    sediment concentration delivered by the Changjiang ( Yangtze ) River into the East
    China Sea between 1956 and 2013. Geomorphology, 268, 123–132.
    https://doi.org/10.1016/j.geomorph.2016.06.009
    E. John List, 1 Fellow, ASCE, Gregory Gartrel!, 2 Member, A., &Winant3, and C. D. (1990).
    Diffusion and Dispersion in COastal Waters. Journal of Hydraulic Engineering, 116(10),
    1158–1179.
    Emmerik, T.Van, Loozen, M., Oeveren, K.Van, Lebreton, L., Nguyen, P., Schwarz, A.,
    &Slat, B. (2018). A Methodology to Characterize Riverine Macroplastic Emission Into
    the Ocean. 5(October), 1–11. https://doi.org/10.3389/fmars.2018.00372
    FABRICE, A., MARIE LOUIS, RASCLE NICOLAS *, PHILIPPE FORGET, &ROLAND
    ARON. (2009). Observation and Estimation of Lagrangian , Stokes , and Eulerian
    Currents Induced by Wind and Waves at the Sea Surface. Journal of Physical
    87
    Oceanography, 2820–2838. https://doi.org/10.1175/2009JPO4169.1
    Fang, B. G. and G. (2006). Winter Counter-wind Currents off the Southeastern China Coast :
    A Review. Journal of Ocean, 62, 1–24.
    Fredj, E., Kohut, J., Roarty, H., &Lu, J. (2017). Evaluation of the Hf-Radar Network System
    around Taiwan using Normalized Cumulative Lagrangian Separation. 1–8.
    Gao, M., Ning, J., &Wu, X. (2015). Normal and Extreme Wind Conditions for Power at
    Coastal Locations in China. https://doi.org/10.1371/journal.pone.0136876
    Gross, M. (2013). Plastic waste is all at sea. CURBIO, 23(4), R135–R137.
    https://doi.org/10.1016/j.cub.2013.01.070
    Hans C. Graber and Brian K. Haus. (2016). Plastic marine debris : Sources , distribution and
    impacts on coastal and ocean biodiversity. Journal of Geophysical Research,
    3(February), 40–54.
    Heron, M., Gomez, R., Weber, B., Dzvonkovskaya, A., Helzel, T., Thomas, N., &Wyatt, L.
    (2016). Application of HF Radar in Hazard Management. International Journal of
    Antennas and Propagation, 2016. https://doi.org/http://dx.doi.org/10.1155/2016/4725407
    I. I. Rypina, A. R. Kirincich, R. Limeburner, A. I. A. U. (2014). Eulerian and Lagrangian
    Correspondence of High-Frequency Radar and Surface Drifter Data : Effects of Radar
    Resolution and Flow Components. 945–966. https://doi.org/10.1175/JTECH-D-13-
    00146.1
    Jambeck et al. (2015). Plastic waste inputs from land into the ocean. Science, 347(6233), 768–
    771. https://doi.org/10.1029/EO066i007p00059-06
    Jan, S., Sheu, D. D., &Kuo, H. (2006). Water mass and throughflow transport variability in
    the Taiwan Strait. 111(August), 1–15. https://doi.org/10.1029/2006JC003656
    Kripalani, R. H., &Singh, S.V. (1993). Large Scale Aspects of India-China Summer Monsoon
    Rainfall. 10(l).
    Kulkarni, A. (1997). RAINFALL VARIABILITY OVER SOUTH-EAST ASIAÐCONNECTIONS
    WITH INDIAN MONSOON AND ENSO EXTREMES : NEW PERSPECTIVES. 17, 1155–
    1168.
    Lebreton, L. C. M., Van DerZwet, J., Damsteeg, J. W., Slat, B., Andrady, A., &Reisser, J.
    (2017). River plastic emissions to the world’s oceans. Nature Communications, 8, 1–10.
    https://doi.org/10.1038/ncomms15611
    Lewis, Roy. 1997. Dispersion in Estuaries an Coastal Waters. England: Wiley Editorial
    Offices.
    Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., &Lin, S. W. (2008).
    88
    Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait.
    Marine Geology. https://doi.org/10.1016/j.margeo.2008.09.007
    LOHITZUNE SOLABARRIETA. (2016). Skill Assessment of HF Radar Derived Products
    for Lagrangian Simulations in the Bay of Biscay. Journal of Atmospheric and Oceanic
    Technology, (January 2009), 2585–2597. https://doi.org/10.1175/JTECH-D-16-0045.1
    Mantovanelli, A., Heron, M. L., Heron, S. F., &Steinberg, C. R. (2012). Relative dispersion
    of surface drifters in a barrier reef region. Journal of Geophysical Research,
    117(October), 1–15. https://doi.org/10.1029/2012JC008106
    Mouri, G., Che, F., &Chalov, S. (2014). Geomorphology Characteristics of suspended
    sediment and river discharge during the beginning of snowmelt in volcanically active
    mountainous environments. Geomorphology, 213, 266–276.
    https://doi.org/10.1016/j.geomorph.2014.02.001
    Okubo, A. (1974). Some Speculations on Oceanic Diffusion Diagrams. (179), 77–85.
    Paduan, B. J. D., &Graber, H. C. (1997). INTRODUCTION TO HIGH-FREQUENCY
    RADAR : REALITY AND MYTI-I.
    Paduan, J. D., &Rosenfeld, L. K. (1996). Remotely sensed surface currents in Monterey Bay
    from shore- based HF radar ( Coastal Ocean Dynamics Application Radar ). Journal of
    Geophysical Research, 101.
    R.H. Kripalani, Sushama Inamdar, and S. (1996). RAINFALL VARIABILITY OVER
    BANGLADESH AND NEPAL : COMPARISON AND CONNECTIONS WITH
    FEATURES OVER INDIA. Journal of Climatology, 16, 689–703.
    Schmidt, C., Krauth, T., &Wagner, S. (2017). Export of Plastic Debris by Rivers into the Sea.
    12246–12253. https://doi.org/10.1021/acs.est.7b02368
    Schott F., Frisch A. S., Leaman K., Samuels G., and F. P. (1985). High Frequency Doppler
    Radar Measurements of the Florida Current in Summer 1983. Journal of Geophysical
    Research, 90(5), 9006–9016.
    Selukar, N. B. (2014). Waste Thermocol to Adhesive for Better Environment. 1(6), 98–101.
    Shen, Y., Lai, J., Leu, L., Lu, Y., Chen, J., Shao, H., …Tseng, R. (2018). Applications of
    ocean currents data from high- frequency radars and current profilers to search and
    rescue missions around Taiwan. Journal of Operational Oceanography, 0(0), 1–11.
    https://doi.org/10.1080/1755876X.2018.1541538
    Sulochanan, B., Lavanya, S., &Kemparaju, S. (2013). Influence of river discharge on
    deposition of marine litter. (216), 27–29.
    Ullman, D. S., Donnell, J. O., Kohut, J., Fake, T., &Allen, A. (2006). Trajectory prediction
    89
    using HF radar surface currents : Monte Carlo simulations of prediction uncertainties.
    111(May), 1–14. https://doi.org/10.1029/2006JC003715
    Xixi Lu, Matti Kummu, and C. O. (2014). Reappraisal of sediment dynamics in the Lower
    Mekong River, Cambodia. 1865(April), 1855–1865. https://doi.org/10.1002/esp.3573
    Yi, Y., Billa, L., &Singh, A. (2015). Geoscience Frontiers Effect of climate change on
    seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in
    Southeast Asia. Geoscience Frontiers, 6(6), 817–823.
    https://doi.org/10.1016/j.gsf.2014.02.009
    Yonggang Liu, Robert H. Weisberg, A. C. R. M. (2010). HF Radar Performance in a Low-
    Energy Environment : CODAR SeaSonde Experience on the West Florida Shelf *. 1689–
    1711. https://doi.org/10.1175/2010JTECHO720.1

    QR CODE
    :::