| 研究生: |
陳孟怡 Meng-Yi Chen |
|---|---|
| 論文名稱: |
金屬發泡材質子交換膜燃料電池之研究 Metal Foam in Proton Exchange Membranes Fuel Cell |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 交流阻抗 、電池堆 、質子交換膜 、金屬發泡材 |
| 外文關鍵詞: | fuel cell stack, proton exchange membrane fuel cell, AC impedance, metal foam |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是使用金屬雙極板與金屬發泡材,組成質子交換膜燃料電池之單電池與電池堆,且搭配不同的商用膜組,探討反應物流量、操作溫度、加濕溫度等,對電池性能之影響。
金屬板導電性能佳、機械性能強度好,適合作為雙極板的材料;使用金屬發泡材取代傳統內流道的作法,在單電池上已被證實有傑出的性能。本研究目的即是在觀察,此組合應用在電池堆時,其性能表現與運作特徵。另外,亦進行電池堆之長效測試與電池堆之交流組抗分析。
由實驗結果可知,增加空氣流量對於電池性能有顯著的增加;而氧氣流量對於電池堆的影響,則有其極限值存在。電池溫度與加濕溫度的適當配合,有助於電堆性能的提昇。長時間測試,對於電堆研究開發有著很大的影響,定時的增加陰極端流量,有助於陰極端的排水控制,也可改善濃差極化的現象。而由電池放電的極化曲線、及交流組抗分析的結果,可建立出一合理的等效電路模型,並確認此電池系統中,最主要的反應阻力來源為質傳阻抗。並藉此分析結果,以討論未來電池堆的性能提昇之研發方向。
Metal foam is used in this study to replace the traditional graphite flow field plate. Along with commercial catalyst coated membranes, single and multi-cell fuel cell stacks are assembled to investigate the effects of the reactant flow rate, operation temperature, and humidification temperature on the cell performance.
Metals have good electrical conductance and mechanical strength, which are suitable for bipolar plates in fuel cell stacks. Previous studies have shown that fuel cells using metal foam to replace traditional flow channels can have very good performance. The purpose of this study is to study the operation performance and characteristic of the fuel cell stack. In addition, the long-term performance and AC impedance are also investigated in this study.
The results show that the performance of the fuel cell stack is improved by increasing the air flow rate. If oxygen is used as the oxidant, the required flow rate is lower. In order to get better cell performance, suitable humidification in the reactant is required. For long-term operation, periodic purging in the cathode can reduce the polarization loss due to mass transfer.
Equivalent circuit model of the fuel cell stack system can be built from the AC impedance analysis. The results show that the main resistance in this system is mass transfer resistance.
[1] 黃鎮江, “燃料電池”, 全華科技圖書, 中華民果92年11月,pp 2-21
[2] H. I. Lee, C. H. Lee , T. Y. Oh, “Development of 1kW class polymer electrolyte membrane Fuel cell power generation system,” Journal of Power Sources, Vol. 107, pp. 110-119, (2002)
[3] M. W. Knobbe, W. He, P. Y. Chong, T. V. Nguyen, “Active gas management for PEM fuel cell stacks,” Journal of Power Sources, Vol. 138, pp. 94-100, (2004)
[4] D. Buttin, M. Straumann, M. Dupont, “Development and operation of a 150 W air-feed direct methanol fuel cell stack,” Journal of Applied Electrochemistry, Vol. 31, No. 3, pp. 275-279, (2001)
[5] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” Journal of Power Source, Vol. 80, pp. 226-234, (1999)
[6] R Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 93, pp. 25-31, (2001)
[7] R. Jiang, D. Chu, “Voltage time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge,” Journal of Power Sources, Vol. 92, pp. 193-198, (2001)
[8] W. H. Zhu , R. U. Payne , D. R. Cahela and B. J. Tatarchuk, “ Uniformity analysis at MEA and stack Levels for a Nexa PEM fuel cell system,” Journal of Power Sources, Vol.128, pp. 231-238, (2004)
[9] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “ Operational aspects of a large PEFC stack under practical conditions,” Journal of Power Sources, Vol.128, pp. 208-217, (2004)
[10] Y. J. Sohn, G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee, S. D. Yim and C. S. Kim, “Operating characteristics of an air-cooling PEMFC for portable applications,” Journal of Power Sources, Vol. 145, pp.604-609, (2005)
[11] J. Zhang, Y. Tang, C. Song, X. Cheng, J. Zhang, H. Wang, “PEM fuel cells operated at 0% relative humidity in the temperature range of 23-120℃,” Electrochimica Acta, Vol. 52, pp.5095-5101, (2007)
[12] Y. J. Sohn, G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee, S. D. Yim, C. S. Kim, “Operating characteristics of an air-cooling PEMFC for portable applications,” Journal of Power Sources, Vol.145, pp.604-609, (2005)
[13] V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks,” Journal of Power Source, Vol.70, pp.55-58, (2001)
[14] R. Eckl, W. Zehtnera, C. Leub, U. Wagner, “Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack,” Journal of Power Sources, Vol.138, pp.137-144, (2004)
[15] A. Taniguchi, K. Yasuda, “Highly water-proof coating of gas flow channels by plasma polymerization for PEM fuel cells,” Journal of Power Sources, Vol.141, pp.8-12, (2005)
[16] C. Y. Wen, G. W. Huang, “Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell,” Journal of Power Sources, Vol.178, pp.132-140, (2007)
[17] R. De Levie, “On porous electrodes in electrolyte solutions,” Electrochim. Acta, Vol.8, pp.751, (1963)
[18] T. E. Springer, I. D. Raistrick, “Electrical Impedance of a Pore Wall for the Flooded‐Agglomerate Model of Porous Gas‐Diffusion Electrodes,” Journal of the Electrochemical Society, Vol.136, pp.1594-1603, (1989)
[19] M. Eikerling, A. A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol.475, pp.107-123, (1999)
[20] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance,” Journal of Power Sources, Vol.161, pp.920-928, (2006)
[21] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance,” Journal of Power Sources, Vol.161, pp.929-937, (2006)
[22] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B.Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes,” International Journal of Hydrogen Energy, Vol.32, pp.4358-4364, (2007)
[23] A. Kumar, R.G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol.114, pp.54-62, (2003)
[24] A. Kumar, R. G. Reddy, “Materials and design development for bipolar/end plates in fuel cells,” Journal of Power Sources, Vol.129, pp.62-67, (2004)
[25] S. Arisetty, A. K. Prasad, S. G. Advani, “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol.165, pp.49-57, (2007)
[26] 蔡秉蒼, 曾重仁, “金屬發泡材質子交換膜燃料電之性能分析”,第三屆全國氫能與燃料電池學術研討會,FC043, 國立台南大學, 台南市, 2008年11月
[27] X. Yuan, J. C. Sun, H. Wang, J. Zhang, “AC impedance technique in PEM fuel cell diagnosis- A review,” International Journal of Hydrogen Energy, Vol.32, pp.4365-4380, (2007)
[28] A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications,” John Wiley & Sons, Inc., pp.351-352, (2001)