跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳怡孜
I-Tzu Chen
論文名稱: GNSS RO觀測資料對颱風莫拉克預報之影響:觀測系統模擬實驗
指導教授: 黃清勇
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 106
中文關鍵詞: GNSSOSSE
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣常受到西北太平洋及南中國海生成的颱風侵襲,如何準確地預報颱風的動向、強度、結構及降雨量相當重要。由於颱風的生成與發展常發生於廣大的洋面上,但海面上的觀測資料非常缺乏,沒有足夠的資訊和解析度來解釋颱風和附近的大氣環流,目前主要依賴遙測技術提供洋面上的觀測資料。許多研究證明全球導航衛星系統掩星技術之觀測資料具有便宜、準確及全球平均分佈等優勢,能彌補某些區域傳統觀測資料不足的問題。但影響颱風預報的因素很多,且無法完全掌握真實的大氣狀況,難以說明不同的掩星資料及使用不同的同化運算子對於颱風預報的影響。因此,本研究利用觀測系統模擬實驗(Observing System Simulation Experiments, OSSE),期望在假想的已知大氣情況下,利用自行設計的觀測位置,試圖了解同化不同的GPS掩星觀測資料─ ─折射率或偏折角─ ─對於颱風預報的影響。
    本研究使用MM5四維資料同化系統(Four-Dimensional Variational Data Assimilation, 4DVAR),同化虛擬渦旋資料以及福爾摩沙衛星三號(FORMOSAT-3/COSMIC)衛星GPS RO折射率的觀測資料,期待找出一組最適當的結果作為Nature run ,提供二維射線追蹤模式(ray tracing model)作為真實的大氣狀態,並模擬COSMIC-2運行軌道以假想接收GPS衛星和GALELIO衛星之觀測點數,產生假想的掩星觀測資料,最後再以WRF三維資料同化系統(Three-Dimensional Variational Data Assimilation, 3DVAR),同化產生出來之折射率或偏折角GPS掩星觀測資料以進行觀測系統模擬實驗
    研究中所選取的個案是2009年中度颱風莫拉克,在莫拉克模擬實驗中,同化虛擬渦旋資料能改善颱風的初始強度、結構以及中心定位;而同化真實的掩星觀測資料能調整初始資料的水汽場、溫度場與風場,降低模式初始場所存在的誤差。因此同時同化虛擬渦旋以及掩星觀測資料能使大氣環境和颱風本身的強度更接近真實,選其作為Nature run以進行OSSE實驗。在OSSE實驗中,不管是同化折射率或偏折角,結果皆顯示同化掩星技術之觀測資料筆數越多,改善程度越明顯。同化偏折角在第二、第三天雨量模擬結果,較同化折射率的結果更接近Nature run。且颱風路徑預報上,同化偏折角的結果又比同化折射率更接近Nature run。


    Taiwan is often hit by the typhoons over the Northwest Pacific and the South China Sea. How to accurately forecast the typhoon's strength, structure and rainfall is very important. However, the generation and development of typhoons often occur in the ocean but lack of observations, without enough information to resolve the typhoon circulation. It’s more dependent on remote satellites to provide observations on ocean. Many studies have shown that the GNSS radio occultation (RO) observations possess the advantages of high resolution, high accuracy and global coverage, which can cover the shortage of the traditional observations. But, there are many factors that affect typhoon forecast; hence it is difficult to figure out how the model results are produced by using the different RO data or assimilation operators. Therefore, this study utilizes OSSE (Observing System Simulation Experiments), with simulated atmospheric circumstances and the pre-assumed RO positions, aiming to understand the relative impacts of different RO observations ─refractivity or bending angle, on typhoon prediction.
    In this study, we use the MM5 4DVAR (Four-Dimensional Variational Data Assimilation) with bogus data assimilation (BDA) and the observed RO refractivity from the FORMOSAT-3/COSMIC to simulate a typhoon as the observed nature. The Nature run is then used to provide the atmospheric conditions required by the ray tracing model to simulate RO soundings for COSMIC-2 (GPS and GALELIO). Finally, we assimilate the simulated RO refractivity or bending-angle soundings using WRF 3DVAR (Three-Dimensional Variational Data Assimilation).
    The case chosen for the impact study is the Morakot typhoon (2009) that affected Taiwan significantly. The initial strength, structure and position of Morakot were improved with reduced intensity error as bogus data assimilation was performed. The initial temperature and water vapor were adjusted by RO data assimilation. Therefore, the atmospheric environment and the strength of the typhoon are closer to the nature when assimilating both bogus vortex and refractivity. In the OSSE experiment, it was found that the improvement increases with more assimilated RO refractivity or bending-angle soundings from COSMIC-2. Furthermore, assimilation with bending angle appears to outperform that with refractivity in the simulated severe rainfall over Taiwan. The simulated track from assimilation with bending angle is also closer to the nature run than that from refractivity.

    中文摘要 i 英文摘要 iii 致謝 v 目錄 vi 圖表說明 viii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 4 第二章 研究方法及資料處理過程 6 2.1 研究方法 6 2.2 全球導航衛星系統 6 2.3 掩星觀測技術 8 2.4 虛擬渦旋 9 第三章 莫拉克颱風模擬 12 3.1 個案介紹 12 3.2 MM5模式系統 13 3.3 四維變分同化系統 13 3.4 實驗設計 14 3.5 模擬結果與討論 16 第四章 觀測系統模擬實驗 20 4.1 射線追蹤模式 20 4.2 WRF模式系統 22 4.3 三維變分同化系統 23 4.4 同化折射率之觀測系統模擬實驗 24 4.4.1 實驗設計 24 4.4.2 模擬結果與討論 25 4.5 同化偏折角之觀測系統模擬實驗 27 4.5.1 實驗設計 27 4.5.2 模擬結果與討論 27 4.6 WRF TC bogus實驗 29 4.6.1 實驗設計 29 4.6.2 實驗結果 31 第五章 總結與未來展望 32 參考文獻 34 附表與附圖 39

    王潔如,2004:侵台颱風之GPS 折射率3DVAR 資料同化及數值模擬。國立中央大學,大氣物理研究所,碩士論文,108 頁。
    吳俊澤,2007:利用MM5 4DVAR 模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響。國立中央大學,大氣物理研究所,碩士論文,70 頁。
    呂佳龍,2010:同化GPS掩星及其他觀測資料對梅雨模擬之影響。國立中央大學,大氣物理研究所,碩士論文,118頁。
    周濤,2006:利用WRF3DVAR 同化GPS 折射率資料探討對於颱風預報的影響。國立中央大學,大氣物理研究所,碩士論文,89頁。
    迮嘉欣,2009:資料同化對臺灣地區颱風和梅雨模擬之影響。國立中央大學,大氣物理研究所,碩士論文,81 頁。
    陳舒雅,2008:GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文,137 頁
    黃振星,2011:同化FORMOSAT-3/COSMIC及Follow-on掩星觀測資料對颱風預報之影響。國立中央大學,大氣物理研究所,碩士論文,92 頁。
    黃清勇、王潔如,2008:衛星遙測資料三維變分同化對於颱風模擬的影響。大氣科學,36,249-273。
    黃清勇、朱延祥,2004:FORMOSAT-3/COSMIC 科學研究簡介。大氣科學,32,293-328。
    黃清勇、周濤、郭勉之,2007:GPS 掩星折射率資料同化對於颱風模擬之影響。大氣科學,35,135-150。
    曾忠一,2006:大氣科學中的反問題。國立編譯館主編及出版,1288 頁。
    蔡金成,2009:衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響。國立中央大學,大氣物理研究所,碩士論文,87 頁。
    Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 33 1045–1078.
    Anthes, R. A., C. Rocken, and Y.-H. Kuo, 2000: Applications of COSMIC to meteorology and climate. Terr. Atmos. Oceanic Sci., 11, 115-156.
    Chen, S.-H., F. Vandenberghe, and C.-Y. Huang, 2006: Error characteristics of GPS retrieved refractivity using a simulation study. J. Meteor. Soc. Japan, 84, 477-496.
    Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo and S. Sokolovskiy, 2009: Typhoon predictions with GPS radio occultation data assimilations by WRF-VAR using local and nonlocal operators. Terr. Atmos. Oceanic Sci., 20, 133–154
    Cucurull, L. and J.C. Derber, 2008: Operational implementation of COSMIC observations into NCEP’s global data assimilation system. Wea. Forecasting., 23, 702-711.
    Cucurull, L., 2010: Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting. Wea. Forecasting., 25, 749–767.
    Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2007: Assimilation of Global Positioning System radio occultation observations into NCEP’s Global Data Assimilation System. Mon Wea. Rev., 135, 3174-3193.
    Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2008: Preliminary impact studies using global positioning system radio occultation profiles at NCEP. Mon. Wea. Rev., 136, 1865-1877.
    Cucurull, L., Y.-H. Kuo, D. Barker, and S. R. H. Rizvi, 2006: Assessing the impact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Mon. Wea. Rev., 134, 3283-3296.
    Fujita, T., 1952: Pressure distribution within a typhoon. Geophys. Mag., 23, 437-451.
    Grell, G. A., J. Dudhia and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note, 34 NCAR/TN-398+STR, 117 pp.
    Healy S. and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio occultation measurements. Quart. J. Roy. Meteorol. Soc., 132, 605–623.
    Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, doi:10.1002/asi.169.
    Huang, C.-Y., Y.-H. Kuo, S.-H. Chen and F. Vandenberghe, 2005: Improvements on typhoon forecast with assimilated GPS occultation refractivity. Wea. Forecasting., 20, 931–953.
    Kravtsov, Y. A., and Y. I. Orlov, Geometrical Optics of Inhomogeneous Media, 312 pp., Springer-Verlag, New York, 1990.
    Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen and C.-J. Wang 2008: Impact of GPS radio occultation soundings on prediction of Typhoon Bilis (2006) landfalling Taiwan. Terr. Atmos. Oceanic Sci., 20, 115–131.
    Kuo, Y.-H., H. Liu, Y.-R. Guo, C.-T. Terng, and Y.-T. Lin, 2008: Impact of 35 FORMOSAT-3/COSMIC Data on Typhoon and Mei-yu Prediction, National Taiwan University (NTU) Department of Atmospheric Sciences 50th Anniversary Book.
    Kuo, Y.-H., S. V. Sokolovskiy, R. A. Anthes, and F. Vandenberghe, 2000: Assimilation of GPS radio occultation data for numerical weather prediction. Terr. Atmos. Oceanic Sci., 11, 157-186.
    Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507-531.
    Kuo, Y.-H., W. S. Schreiner, J. Wang, D. L. Rossiter, Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, L05817, doi:10.1029/2004GL021443.
    Kuo, Y.-H., X. Zou, and W. Huang, 1997: The impact of GPS data on the prediction of an extratropical cyclone: An observing system simulation experiment. J. Dyn. Atmos. Ocean, 27, 413-439.
    Kuo, Y.-H., X. Zou, S.-J. Chen, Y.-R. Guo, W. Huang, R. Anthes, D. Hunt, M. Exner, C. Rocken, S. Sokilovskiy, 1998: A GPS/MET sounding through an intense upper-level front, Bull. Amer. Met. Soc., 79, 617-626.
    Kursinki, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield, 1995:Observing tropospheric water vapor by radio occultation using the global positioning system. Geophs. Res. Letter, 22, 2365-2368.
    Kursinski, E. R., G. A. Hajj, S. S. Leroy, and B. Herman, 2000: The GPS radio occultation technique. Terr. Atmos. Oceanic Sci., 11, 53-114.
    Leroy, S. S., 1997: Measurement of geopotential height by GPS radio occultation, J. Geophys. Res., 102, 23,429-23,465.
    Liu, H., J. L. Anderson, Y.-H. Kuo, and K. Raeder, 2007: Importance offorecast error multivariate correlations in idealized assimilation of GPS radio occultation data with the Ensemble Adjustment filter, Mon. Wea. Rev., 135, 173-185.
    Liu, H., J. L. Anderson, Y.-H. Kuo, C. Snyder, and A Caya, 2008: Evaluation of a nonlocal quasi-phase observation operator in assimilation of CHAMP radio occultation refractivity with WRF, Mon. Wea. Rev., 136, 242-256.
    Neumann, C. J., 1993: Global overview. Chapter 1, Global Guide to Tropical Cyclone Forecasting. WMO, 1.1-1.56.
    Park K. amd X. Zou, 2004: Toward developing an objective 4DVAR BDA scheme for hurricane initialization based on TPC observed parameters. Mon. Wea. Rev., 132, 2054-2069.
    Parrish, D. F., and J. C. Derber, 1992: The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.
    Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, and X. Zou, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102, 29849-29866.
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: Adescription of the advanced research WRF version 3. NCAR technical note NCAR/TN–475+STR, 113 pp.
    Smith, E. K., and S. Weintraub, 1953: The constants in the equation of atmospheric refractive indix at radio frequencies. Proc. IRE (Inst. Radio. Eng.), 41, No. 8, 1035-1037.
    Thayer, D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9, 803-807.
    Ware, R. et al., 1996: GPS sounding of the atmosphere from low eatth orbit: preliminary results. Bull. Amer. Meteor. Soc., 77, 19-40.
    Wee, T.-K., and Y.-H. Kuo, 2005: Assimilation of CHAMP and SAC-C radio occultation data using MM5 4D-VAR. Joint NCAR/MMM CSU/CIRA Data Assimilation Workshop, Sept. 19th 2005, in Boulder, Colorado.
    Wee, T.-K., Y.-H. Kuo, D. H. Bromwich, A. J. Monaghan, 2008: Assimilation of GPS Radio Occultation Refractivity Data from CHAMP and SAC-C Missions over High Southern Latitudes with MM5 4DVAR. Mon. Wea. Rev., 136, 2923–2944.
    Zou, X., B. Wang, H. Liu, R. A. Anthes, T. Matsumura, and Y.-J. Zhu, 2000: Use of GPS/MET refraction angles in 3D variational analysis. Quart. J. Roy. Meteor. Soc., 126, 3013-3040.
    Zou, X., F. Vandenberghe, B. Wang, M. E. Gorbunov, Y.-H. Kuo, S. Sokolovskiy, J. C. Chang, J. G. Sela, and R. Anthes, 1999: A raytracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J. Geophys. Res., 104, 22301-22318.
    Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio 36 refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229-2249.
    Zou, X.,W. Huang and Q. Xiao, 1997: A user’s guide to the MM5 adjoint modeling system. NCAR TN-437+IA. MMM division, NCAR, 92pp. (available from UCAR Communications, P.O. Box 3000, Boulder, CO80307.)

    QR CODE
    :::