跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳煬智
Yang-Zi Chen
論文名稱: 有限元素法與反應曲面法對旋轉鍛造萬向接頭之最佳化分析
指導教授: 葉維磬
Wei-Ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 138
中文關鍵詞: 旋轉鍛造有限元素分析萬向接頭反應曲面法
外文關鍵詞: cold rotary forging, FEM, universal cross joint, Response Surface Methodology
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用有限元素軟體Deform-3D進行旋轉鍛造萬向接頭模擬分析,研究設計參數對填充率、最大成形力與應變均勻度的影響。本文之設計參數包含旋轉鍛造加工製程參數及對胚料預成形之參數設計等四個因子。胚料預成形設計參數包含胚料高度H和胚料上端面半徑R;旋轉鍛造加工製程參數包含上模具傾斜角γ以及下模每轉進給率S。
    首先經由中心點實驗確定適用二階模型迴歸,再透過最陡坡度法選定較佳的中心點,最終採用適合建構二階反應曲面之Box-Behnken四因子三水準的設計建立共25組模擬,並使用統計軟體Minitab依Deform-3D有限元素分析的結果進行迴歸分析,透過迴歸分析建立二階多項式預測模型。
    將本文所建立的品質特性預測方程式與有限元素模擬的結果進行驗證,其結果顯示預測模型具有精確度。並以Minitab求得填充率望大,成形力望小時之最佳化解,再透過模擬進行驗證確定最佳化結果的精確性。


    For this study, using a FE model by a software named Deform-3D on cold rotary forging of a universal cross joint. The purpose is to realize that the influence of design factors about filling rate, maximum forging load and equivalent strain uniformity.
    The four factors in the design include the work-piece geometry and the rotary forging process parameters. The work-piece geometry such as workpiece height H, the diameter upon the workpiece R and the rotary forging process parameter such us the process parameter with feed amount of per revolution S, and inclination angle of the upper die γ.
    First, by the design of center point making sure that the model is suitable for second order regression. Through the steepest-descent method to find a better point to be new center point. Then the experiment adopts 25 groups of analysis with the Box-Behnken design. Using the Minitab software to do the regression analysis and develop the predicted equations.
    By doing so, it’s expected to using the FEM model and surface response methodology to find the optimum design of the maximum filling rate and the minimum forging load. In this paper, quality characteristics prediction equation established with the results of finite element simulations can verify the results that the prediction model with considerable accuracy.

    目錄 摘要 iv 目錄 vii 圖目錄 xi 表目錄 xv 符號說明 xvii 第一章 緒論 1 1-1前言 1 1-2文獻回顧 3 1-2-1 圓柱及圓環旋轉鍛造鍛粗加工 4 1-2-2 複雜幾何鍛件的旋轉鍛造加工 9 1-3 研究動機 13 第二章 基本理論 15 2-1旋轉鍛造成型原理 15 2-2 旋轉鍛造運動分析 18 2-3十字軸式萬向接頭模具建立 27 第三章 有限元素法與實驗設計法 32 3-1有限元素模擬 32 3-1-1有限元素法於塑性加工之應用 33 3-1-2有限元素法之力學模式及數值分析 34 3-2 Deform-3D有限元素軟體[46] 35 3-2-1軟體介紹 35 3-2-2 Deform-3D的使用流程 36 3-3模擬參數設定 38 3-3-1旋轉鍛造加工參數及材料性質 38 3-3-2有限元素網格建構與模擬收斂性探討 40 3-4反應曲面法(Response Surface Methodology,RSM) [47] 45 3-4-1實驗設計 45 3-4-2迴歸分析基本理論 45 3-4-3模擬實驗因子與水準 48 3-4-4中心點實驗與參數優化 49 3-4-5 Box-Behnken實驗設計 58 第四章 結果與討論 61 4-1模擬驗證 61 4-2旋轉鍛造萬向接頭模擬結果 63 4-2-1旋轉鍛造萬向接頭之軸向成形力 67 4-2-2旋轉鍛造萬向接頭之填充率 68 4-2-3旋轉鍛造萬向接頭之應變均勻度 69 4-2-4旋轉鍛造萬向接頭實驗設計之結果 70 4-3模型建構 71 4-3-1填充率之迴歸分析 72 4-3-2成形力之迴歸分析 77 4-3-3應變均勻度之迴歸分析 81 4-3-4模型檢驗 85 4-4旋轉鍛造萬向接頭之最佳化分析 87 4-4-1模擬實驗最佳化 87 4-5品質因子對品質特性之效應 88 4-5-1品質因子對填充率之效應 89 4-5-2品質因子對成形力之效應 93 4-5-3品質因子對應變均勻度之效應 98 第五章 結論與建議 103 5-1結論 103 5-2建議 104 參考文獻 105 附錄A 112 附錄B 115

    參考文獻
    [1] H-K. Oh and S. Choi, “A Study on Center Thinning in the Rotary Forging of a Circular Plate”, Journal of Materials Processing Technology, Vol.66, pp.101–106, April 1997 .
    [2] E. E. Slick, “Method of and apparatus for forging metal”. US Patent 915 232, March 1909.
    [3] P. M. Standring, “ Characteristics of rotary forging as an advanced manufacturing tool” , Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol.215, pp. 935-945, July 2001.
    [4] Z. Marciniak, “A rocking-die technique for cold-forming operations”, Machinery and Production Engineering, Vol.117, pp. 792-797, 1970.
    [5] R.A.C. Slater, and E. Appleton, “Some experiments with model materials to simulate the rotary forging of hot steels”, Machine Tool Design Research Conf., Binningham, U.K., pp. 1117-1136,1970.
    [6] P. M. Standring and E. Appleton, “Rotary forging developments in Japan, Part 1, Machine development and forging research”, Journal of Mechanical Working Technology, Vol.3, pp. 253-273, 1980.
    [7] J. A. Schey, T. R. Venner, and S. L. Takomana, “Shape changes in the upsetting of slender cylinders”, Journal of Engineering for Industry, Vol.104, pp. 79-83, February 1982.
    [8] M. Zhang, “Calculating force and energy during rotating forging”, In 3 rd International Conference on Rotary Metalworking Processes (ROMP 3), pp. 115-124, 1984.
    [9] J. Oudin, Y. Ravalard, G. Verwaerde, and J. C. Gelin, “Force, torque and plastic flow analysis in rotary upsetting of ring shaped billets”, International journal of mechanical sciences, Vol.27, pp. 761-780, 1985.
    [10] R. Shivpuri, “Past developments and future trends in the rotary or orbital forging process”, Journal of Materials Shaping Technology, Vol.6, pp. 55-71, March 1988.
    [11] D. Zhou, S. Yuan, Z. R. Wang and Z. Xiao, “Defects caused in forming process of rotary forged parts and their preventive methods”, Journal of Materials Processing Technology, Vol.32, pp. 471-479, July 1992.
    [12] G. Wang, K. Xue and Y. Lu, “Methods of dealing with some problems in analyzing rotary forging with the FEM and initial application to a ring workpiece”, Journal of materials processing technology, Vol.71, pp. 299-304, November 1997.
    [13] S. Choi, K. H. Na, and J. H. Kim, “Upper-bound analysis of the rotary forging of a cylindrical billet”, Journal of Materials Processing Technology, Vol.67, pp. 78-82, May 1997.
    [14] H-K. Oh and S. Choi, “A study on center thinning in the rotary forging of a circular plate”, Journal of materials processing technology, Vol.66, pp. 101-106, April 1997.
    [15] G. Wang and G. Zhao, “Simulation and analysis of rotary forging a ring workpiece using finite element method”, Finite elements in analysis and design, Vol.38, pp. 1151-1164, October 2002.
    [16] J. Čermák, G. Gráf, “Die Design for Near-Net Shape Forging”, Acta Polytechnica Hungarica, Vol.43, 2003.
    [17] G. Liu, S. J. Yuan, Z. R. Wang, and D. C. Zhou, “Explanation of the mushroom effect in the rotary forging of a cylinder”, Journal of materials processing technology, Vol.151, pp. 178-182, September 2004.
    [18] I. Montoya, M. T. Santos, I. Pérez, B. González, and J. F. Puigjaner, “Kinematic and sensitivity analysis of rotary forging process by means of a simulation model”, International Journal of Material Forming, Vol.1, pp. 383-386, April 2008.
    [19] G. Liu, S. J. Yuan, Z. R. Wang and T. Xie, “Finite element model and simulation of rotary forging of a disc”, ACTA Metallurgica Sinica (English Letters), Vol.13, pp. 470-475, 2000.
    [20] X. Han, and L. Hua, “Comparison between cold rotary forging and conventional forging”, Journal of mechanical science and technology, Vol.23, pp. 2668-2678, October 2009.
    [21] X. Han, and L. Hua, “3D FE modeling simulation of cold rotary forging of a cylinder workpiece”, Materials & Design, Vol.30, pp. 2133-2142, June 2009.
    [22] X. Han, and L. Hua, “Effect of size of the cylindrical workpiece on the cold rotary-forging process”, Materials & Design, Vol.30, pp. 2802-2812, September 2009.
    [23] X. Han, and L. Hua, “3D FE modeling of cold rotary forging of a ring workpiece”, Journal of Materials Processing Technology, Vol.209, pp. 5353–5362, July 2009.
    [24] X. Han, and L. Hua, “Friction behaviors in cold rotary forging of 20CrMnTi alloy”, Tribology International, Vol.55, pp.29-39, November 2012.
    [25] X. Han, and L. Hua, “3D FE modelling of contact pressure response in cold rotary forging”, Tribology International, Vol.57, pp. 115–123, January 2013.
    [26] D. Zhou, Y. Han and Z.R. Wang, “Research on rotary forging and its distribution of deformation”, Journal of Materials Processing Technology, Vol.31, pp.161-168, May 1992

    [27] R. Hu, P. Cheng, L. Hua, Z. G. Lu and J. Lan, “Influence of Processing Parameter on Stress and Failure Form of Rotary Roll Cavity Die for Straight Tooth Bevel Gear”, Hot Working Technology, Vol.36, pp. 38-41, January 2007.
    [28] P. Cheng, Y. Chen, P. Zhou, R. Hu, Y. Li, “3D numerical simulation of rotary forging for bevel gear blank”, China Metal forming Equipment & Manufacturing Technology, Vol.33, pp. 129-132, 2008.
    [29] 何明祥,2008,“斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究”,碩士論文,國立高雄應用科技大學。
    [30] J. J. Sheu and C. H. Yu, “The die failure prediction prevention of the orbital forging process”, Journal of Materials Processing Technology", Vol.201, pp. 9-13, May 2008.
    [31] Y. Li, H. Wang, X. Wang, and C. Zhu, “Fracture of Concave Die for Spiral Bevel Gear in the Rotary Forging Process”, China Metal Forming Equipment & Manufacturing Technology, Vol.44, pp. 89-92, 2009.
    [32] J. W. Sun, J. H. Fu, Y. T. Li, J. X. Cao and Y. Yan, "Analysis of new rotary forging process of rear-semiaxis using Deform-3D," Forging and stamping technology, vol. 34, pp. 160-163, March 2009.
    [33] G. Samołyk, “Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear”, Journal of Materials Processing Technology, Vol.213, pp. 1692-1702, October 2013.
    [34] 蕭至祥,”傘形齒輪旋轉鍛造製程有限元素分析”,碩士論文,國立中央大學,2014。
    [35] W. Feng, W. Yao and P. Jiang, “Influence of eccentricity on movements of orbital head with double eccentric structure in orbital forging”, Procedia Engineering , Vol.81, pp. 2348–2354, 2014.
    [36] X. Han, L. Hua, W. Zhuang and X. Zhang, “Process design and control in cold rotary forging of non-rotary gear parts”, Journal of Materials Processing Technology, Vol.214, pp.2402-2416, November 2014.
    [37] X. Gong, F. Yang, H. Chen, “Research on wear of hot rotary forging die based on Archard's model”, Forging&Stamping technology, Vol.40, pp.119-121, 2015.
    [38] L. Dong, L. Hua, X. Han, J. Lan and W. Zhuang, “Effects of the rotation speed ratio of double eccentricity bushings on rocking tool path in a cold rotary forging press”, Journal of Mechanical Science and Technology, Vol.29, pp.1619-1628, April 2015.
    [39] 蘇耿民,“以有限元素法及反應曲面法分析旋轉鍛造傘形齒輪之加工問題”,碩士論文,國立中央大學,2015。
    [40] X. Han, Q. Jin and L. Hua, “Research on Cold Orbital Forming of Complex Sheet Metal of Aluminum Alloy”, Journal of Manufacturing Science and Engineering, Vol.139, June 2017.
    [41] M. Milutinović, S. Baloš, M. Plančak and D. Movrin, “Comparison of some mechanical properties and micro-topography of a component with non-axisymmetric geometry manufactured by cold orbital and hot forging”, Journal of Materials Processing Technology, Vol.249, pp.179-192, November 2017.
    [42] M. Pop, D. Frunza, “Finite element analysis of friction parameters on 6060 Aluminium alloy impression die cold forging process”, Studia Universitatis Babes-Bolyai Physica, Vol.61, pp.35-46, June 2016
    [43] F. Vesali, M.A. Rezvani, M. Kashfi, “Dynamics of universal joints, its failures and some propositions for practically improving its performance and life expectancy”, Journal of Mechanical Science and Technology, Vol.26, pp.2439-2449, August 2012.
    [44] M. Plančak, D. Movrin, I. Kačmarčik, M. Stefanović, P. Skakun, D. Vilotić, “Comparative analysis of classical forging and orbital forging of cross joint component”, Journal for Technology of Plasticity, Vol.40, pp.43-54, 2015.
    [45] 蔡秉訓, 許志鵬, 張婉琪,「Deform-3D擠型材料參數資料庫建立與擠型模擬及實驗分析驗證」, 鍛造, 18(2), 8~12頁, 2009年6月。
    [46] 胡建軍, 李小平,Deform-3D 塑性成型CAE應用教程, 北京大學出版社, 2011年1月。
    [47] 葉怡成,製程產品與最佳化,五南出版社,2001年6月。
    [48] V. Patil Basavaraj, U. Chakkingal and T. S. Prasanna Kumar, “Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation”, Journal of materials processing technology, Vol.209, pp.89-95, January 2009.

    QR CODE
    :::