跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾珉哲
Min-Che Chung
論文名稱: 組建細胞培養人造磁場微實驗平台
指導教授: 陳健章
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生物醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 58
中文關鍵詞: 磁場梯度場均勻場細胞培養溫控即時觀測
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了一組適用於即時觀測細胞實驗之微型化人造磁場實驗平台,並於系列實驗中觀察鼻咽癌細胞暴露在人造高磁場梯度下的表現狀況。實驗觀察結果顯示鼻咽癌細胞暴露於人造高梯度磁場時,影響癌細胞之細胞週期分布。因此藉由採取物理靜磁學中的Biot-Savart 定律之數學架構,製造高磁場強度、梯度以及硬體架構以符合細胞培養環境規範為本文研究重點,其中將包含產生特定磁強與梯度分布之磁鐵陣列,或產生磁場之線圈以及其衍生之熱場。除以海爾貝克陣列(Halbach Arrays)製作特殊之磁場分布,本微平台中亦可利用特殊多重導線捲繞方式製作人造梯度磁場,使得當電流通過導線時,平台結構內部將產生特殊強度與梯度的人造磁場與溫度場,而在結構外部的磁場將趨近於零。在空間任意位置的精確磁場計算,則需要應用到Bessel function或橢圓函數與其相關技巧。目前本實驗微平台之培養環境面積為3.5cm*3.5cm、深為1 cm,採用之磁鐵陣列或線圈得以人工方式產生1.5~70 mT的磁場峰值變化並伴隨15 mT/mm磁場梯度之特殊人造磁場。然而為使多重捲繞導線產生的磁場強度數值增強,亦將伴隨來自高電流產生之高熱能損失。一旦線圈內的溫度高於環境溫度37℃,培養皿的蒸散作用會上升使得細胞暴露於熱壓力作用,將導致細胞分裂實驗成果不如預期。因此我們將利用電阻定律提出一方程式,使得實驗人員得以藉此方程式調整電壓大小以快速計算該微平台所產生溫度,同時亦將考慮在符合生物培養環境的硬體架構規範之下選擇適當的材料。以其磁場強度分布、梯度分布以及培養環境溫度均能達到實驗預期要求。


    In this work, we developed a magnetic field microplatform for observing the cell migration in real time. Meanwhile, the biological effects of Nasopharyngeal carcinoma cancer cells exposured under the high gradient magnetic field (MF) was investigated. The micoplatform was designed with Length = 3.5 cm, Width = 3.5 cm, Height = 1 cm, respectively. Helmholtz Coil and Halbach Arrays were utilized for fabricating a uniform magnetic field and a gradient magnetic field. The system was operated with a field strength between 1.55-70 mT, which was provided by a magnetic array. Most important of all, it is necessary to provide the appropriate environment with the high magnetic field intensity and high gradient magnetic field for cell culture. Given that the living cells were grown in a humidified atmosphere at 37 ℃, where the temperature is a critical factor for culture. Hence, we propose the derivative equation using Ohmic Law for calculating the critical values of temperature immediately. For Halbach Array group, the gradient magnetic field in comparsion with the uniform magnetic field shows the population of S phase of the Nasopharyngeal carcinoma cancer cells increase owing to magnetic stimuli.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 VII 致謝 VIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法 2 第二章 技術探討 3 2-1 簡介 3 2-2 海爾貝克陣列 3 2-3 電磁場 7 2-3-1 靜磁場 8 2-3-2 必歐-沙伐定律 9 2-3-3 圓形載流線圈 10 2-3-4 亥母霍茲線圈 14 2-4 電阻率 17 2-5 居里溫度 19 2-6 導熱係數 20 第三章 研究內容與方法 21 3-1 研究內容與設計 21 3-2 磁鐵磁場 21 3-2-1 環形磁鐵 21 3-2-2 海爾貝克陣列 23 3-3 線圈磁場 23 3-4 電熱偶式溫度感測 25 3-4-1 電熱偶的原理與構造 25 3-4-2 電熱偶的構造 26 3-4-3 電熱偶的種類 28 3-5 溫控裝置 30 3-5-1 PID控制 30 3-5-2 FY700接線圖 33 3-5-3 溫控裝置操作流程圖 34 3-6 人造磁場微實驗平台 35 3-6-1 銅線線圈 35 3-6-2 矽膠電熱線 37 3-7 即時觀測錄影 38 第四章 研究成果 39 4-1 以細胞培養人造磁場微實驗平台 39 4-2 均勻與梯度磁場 41 第五章 結論 42 參考文獻 43

    [1] A.Pavesi et al., “Engineering a 3D microfluidic culture platform for tumor-treating field application,” Sci. Rep., vol. 6, no. May, pp. 1–10, 2016.
    [2] Y. U.Sumiya et al., “Macrophages Exhibit a Large Repertoire of Activation States via Multiple Mechanisms of Macrophage-activating Factors.,” Anticancer Res., vol. 36, no. 7, pp. 3619–23, 2016.
    [3] X.Yuan, D. E.Arkonac, P. G.Chao, andG.Vunjak-Novakovic, “Electrical stimulation enhances cell migration and integrative repair in the meniscus,” Sci. Rep., vol. 4, no. 1, p. 3674, 2015.
    [4] E. D.Kirson et al., “Disruption of Cancer Cell Replication by Alternating Electric Fields Disruption of Cancer Cell Replication by Alternating Electric Fields,” CANCER Res., vol. 64, pp. 3288–3295, 2004.
    [5] E. T.Wong, E.Lok, andK. D.Swanson, “An Evidence-Based Review of Alternating Electric Fields Therapy for Malignant Gliomas,” Curr. Treat. Options Oncol., vol. 16, no. 8, 2015.
    [6] E.Lok, K. D.Swanson, andE. T.Wong, “Tumor treating fields therapy device for glioblastoma: Physics and clinical practice considerations,” Expert Rev. Med. Devices, vol. 12, no. 6, pp. 717–726, 2015.
    [7] N.Gera, A.Yang, T. S.Holtzman, S. X.Lee, E. T.Wong, andK. D.Swanson, “Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit,” PLoS One, vol. 10, no. 5, pp. 1–20, 2015.
    [8] R. R.Raylman, a C.Clavo, andR. L.Wahl, “Exposure to strong static magnetic field slows the growth of human cancer cells in vitro.,” Bioelectromagnetics, vol. 17, pp. 358–363, 1996.
    [9] J.Miyakoshi, “Effects of static magnetic fields at the cellular level,” Prog. Biophys. Mol. Biol., vol. 87, no. 2–3 SPEC. ISS., pp. 213–223, 2005.
    [10] Y. C.Chen, C. C.Chen, W.Tu, Y. T.Cheng, andF. G.Tseng, “Design and fabrication of a microplatform for the proximity effect study of localized ELF-EMF on the growth of in vitro HeLa and PC-12 cells,” J. Micromechanics Microengineering, vol. 20, no. 12, 2010.
    [11] David K. CHENG, FIELD AND WAVE ELECTROMAGNETICS, 2nd ed. Pearson, 1995.
    [12] S. C.Chapra, Applied Numerical Methods With MATLAB for Engineers Scientists. McGraw-Hill Higher Education, 2012.
    [13] D. T. V.Brian H. Hahn, Essential Matlab for Scientists and Engineers, 4th ed. Academic Press, 2013.
    [14] I.Ahmed, T.Istivan, I.Cosic, andE.Pirogova, “Evaluation of the effects of Extremely Low Frequency (ELF) Pulsed Electromagnetic Fields (PEMF) on survival of the bacterium Staphylococcus aureus,” EPJ Nonlinear Biomed. Phys., vol. 1, no. 1, p. 5, 2013.
    [15] W.-Y.Wang, Influence of Pulse Electromagnetic Fields with Antrodia Camphorata on Tumor cells, no. June. National Cheng Kung University, 2013.
    [16] S.-T.XU, Influence of Pulse Electromagnetic Fields with Antrodia Camphorata on Tumor cells. National Cheng Kung University, 2012.
    [17] H.-Y.CHEN, Pulsed Electromagnetic Field plus Fetal Spinal cord Transplants Enhance the Regeneration of Spinal Cord in Paraplegic Rat. National Chung Hsing University, 2002.
    [18] 鐘國家、侯安桑、廖忠興, 感測器原理與應用實習, 2nd ed. 全華圖書, 2015.
    [19] W. B. W.Bolton, Programmable Logic Controllers. Brilliant-Training, 1998.
    [20] G. C. G. F. G. E.Salgado, Control System Design. Prentice Hall, 2001.

    QR CODE
    :::