| 研究生: |
鄧旭昇 Hsu-Shen Teng |
|---|---|
| 論文名稱: |
超低電阻率單晶二矽化鎳之可靠度量測 Reliability and Ultra-low Resistivity of Epitaxial Nickel Silicide for Future CMOS Source/Drain Contact |
| 指導教授: | 辛正倫 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 單晶 、二矽化鎳 、可靠度 、電致遷移 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來為了有效的降低接觸電阻(contact resistance),提出使用表面平整的磊晶金屬矽化物源/汲極結構來取代金屬矽化物源/汲極。目前有研究指出,一般成長二矽化鎳需要700℃以上的高溫,但當金屬Ni厚度小於某一臨界厚度時,即可在低溫下與矽反應成磊晶的二矽化鎳且不需要經過其他中間相(Ni2Si、NiSi)。本論文利用離子濺鍍機(Sputter)鍍膜後將Ni濕蝕刻掉,Ni會與矽形成一層超薄的鎳矽混合層,此層厚度約會小於能形成磊晶二矽化鎳所需的臨界厚度,因此再經過快速熱退火(RTA)處理後,即可在低溫下形成磊晶二矽化鎳。本論文將會在大電流密度下量測磊晶二矽化鎳與多晶二矽化鎳的可靠度(reliability),並求出個別的活化能(activation;Ea)及電流加速因子(current acceleration factor;n)。最後利用公式來回推在正常電流密度使用下,磊晶二矽化鎳的元件失效時間。也將用四點量測機台、掃描式電子顯微鏡與穿透式電子顯微鏡,來研究磊晶二矽化鎳的電性、磊晶品質、表面型態及分析造成元件失效的原因。
Ultra-thin epitaxial NiSi2 was formed and the structure was examined by electronic microscopy techniques. Compared to previous reports, the resistivity of the epitaxial NiSi2 was unprecedentedly as low as 6 μΩ-cm. The reliability, which was investigated under different temperatures and current densities to understand its electronic characteristics, is 1.5 times longer than that of the conventional poly-crystalline counterpart. By using Black’s equation and measured the mean-time-to-failure values to obtain the reliability characteristics, the details of epitaxial and poly-NiSi2 were revealed. The electromigration phenomenon was obtained as the failure mechanism. This observation provides evidence that the epitaxial NiSi2 is promising as source/drain contact in the future.
[1] L.J. Chen, “Silicide technology for integrated circuits ” Institute of Elec. Eng., London(2004)
[2] T. Morimoto, T. Ohguro, H.S. Momose, and M. Tsuchiaki “Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI” IEEE Trans. Electron devices,42,915(1995)
[3] S.L Zhang and M. Ostling “Metal silicides in CMOS technology past, present and future trends” Critical reviews in solid state and material science,28,1(2004)
[4] H. Iwai, T. Ohguro, and S.I. Ohmi “NiSi silicide technology for scaled CMOS” Microelectronics Eng., 60,157(2002)
[5] Properties of metal silicides, edited by K. Maex and M. Van Rossum (Inspec,1995)
[6] M.A. Nicolet and S.S. Lau, in chapter 6 “Formation and characterization of transition metal silicide” Academic press(1983)
[7] E.H. Rhoderick and R.H. William “Metal-semiconductor contact ” in Monographs in electrical and electronic engineering, Oxford, U. K, Clarendon(1988)
[8] R.T. Tung, J.M. Gibson, and J.M. Poate “Formation of Ultrathin Single-Crystal Silicide Films on Si: Surface and Interfacial Stabilization of Si-NiSi2 Epitaxial Structures” Physical Review Letters, Vol.50, Number.6 (1983)
[9] S. Migita, Y. Morita, N. Taoka, W. Mizubayashi and H. Ota “Growth Mechanism of Epitaxial NiSi2 in Atomic-Scale for Schottky Source/Drain in Silicon Nanowire Transistors” Ext. Abs. the 9th International Workshop on Junction Technology(2009)
[10] R. T. Tung, J. M. Gibson, and J. M. Poate “Growth of single crystal epitaxial silicides on silicon by the use of template layers” Applied Physics Letters 42, 888 (1983)
[11] K. De Keyser, C. Van Bockstael, and C. Lavoie “Phase formation and thermal stability of ultrathin nickel-silicides on Si(100)” Applied Physics Letters 96, 173503 (2010)
[12] Q. T. Zhao, L. Knoll, B. Zhang, D. Buca, J. M. Hartmann, and S. Mantl, "Ultrathin epitaxial Ni-silicide contacts on (100) Si and SiGe: Structural and electrical investigations," Microelectronic Engineering, vol. 107, pp. 190-195, Jul 2013
[13] L. W. Cheng, S. L. Cheng and L. J. Chen, ”Formation of Ni silicide on (001) Si with a thin interposing Pt layer”, J.Vac. Sci. Technol. A ,18,1176(2000)
[14] Hinkel, V. Sorba, L. Haak, H. and Horn, K. ” Evidence for Si diffusion through epitaxial NiSi2 grown on Si(111)” Applied Physics Letters ,Volume:50 (1987)
[15] Chen, L.J. ;Hung, L.S. Mayer, J.W. and Baglin, J.E.E “Epitaxial NiSi2 formation by pulsed ion beam annealing” Applied Physics Letters ,Volume:40(1982)
[16] R. Pretorius, C.C. Theron, A. Vantomme, and J. W. Mayer, “Compound phase formation in thin film structure,” Critical Review in Solid State and Material Science, 24 ,1(1999)
[17] Lucile Arnaud , G. Tartavel, T. Berger, D. Mariolle, Y. Gobil, and I. Touet “Microstructure and electromigration in copper damascene lines” Microelectronics Reliability 40 (2000)
[18] P. Waltz, L. Arnaud, G. Lormand, and G. Tartavel “Influence of thermal heating e€ect on pulsed DC electromigration result analysis” Microelectronics Reliability 38 (1998)
[19] Naoki Torazawa, Toru Hinomura, and Susumu Matsumoto “Effects of N doping in Ru-Ta alloy barrier on film property and reliability for Cu interconnects” IEEE (2009)
[20] Jiang Tao, Nathan W. Cheung, and Chenming Hu “Electromigration Characteristics of TiN Barrier Layer Material” IEEE ELECTRON DEVICE LETTERS, VOL. 16, NO, 6 (1995)
[21] Linjun Cao, Paul S. Ho “Electromigration Reliability of Mn-doped Cu
Interconnects for the 28 nm Technology” IEEE (2013)
[22] J. Gambino, T. D. Sullivan, F. Chen, J. Gill, S. Mongeon, E. Adams, J. Burnham, K. Rodbell “Reliability of Cu Interconnects with Ta Implant” IEEE (2007)
[23] Yi-Lung Cheng, Ming-Kai Shiau, Wei-Yuan Chung, and Ying-Lang Wang “Competition of Electromigration Reliability in Copper and Nickel-Silicide” Journal of The Electrochemical Society,158 (2011)