跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江威德
Wei-Te Chiang
論文名稱: 設計二苯基蒽衍生物應用於能量上轉移系統及其光物理性質探討
The Design and Photophysical Properties of Energy Upconversion Systems using Diphenylanthracence Derivatives
指導教授: 周大新
Tahsin J. Chow
侯敦仁
Duen-Ren Hou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 99
語文別: 中文
論文頁數: 111
中文關鍵詞: 三重態-三重態消滅能量上轉移
外文關鍵詞: triplet-triplet annihilation, energy upconversion
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來科學家們對於利用低能量的光產生高能量的光產生興趣,其中一種方法便是利用發光團吸收低能量的入射光,經由系統間跨越後將能量轉移至另一個發光團,並且由三重態-三重態消滅機制(triplet-triplet annihilation,TTA)而產生上轉移螢光。
    本實驗以rose bengal衍生物為敏化劑,分別設計兩個發光體,在四氫呋喃和甲醇混合溶液中組合成此能量上轉移系統。一個是利用長碳鏈連結兩個發光單體的DMEPA (1,4-bis(2,4,6-trimethyl-3-((10-phenylanthracen-9-yl)
    ethynyl)phenyl) butane),增加其分子碰撞的機會,探討是否有分子內三重態消滅的存在,使得此系統於稀濃度下仍有一定的上轉移螢光表現。此外設計了tBEPA (9-(3,3-dimethylbut-1-yn-1-yl)-10-phenyl-anthrancene)發光體,探討分子結構的改變對其光物理性質及上轉移系統中的影響。
    本實驗中兩個系統皆以568 nm激發rose bengal,分別在450 nm 及425 nm可看到DMEPA及tBEPA的上轉移螢光,最佳上轉移螢光量子產率分別為0.0021及0.0052。此外將DMEPA系統與之前實驗室所研究的MEPA、BMEPA系統做比較,發現DMEPA的結構設計無法明顯看到分子內TTA的效果,從發光體濃度與螢光強度的關係來推測,DMEPA於低濃度下存在著分子內的自我淬息使得效果不如預期。


    In recent years, scientists are interested in energy upconversion, i.e., the generation of higher energy photons with respect to incident light. Photon upconversion via triplet-triplet annihilation is a possible way.
    In our work, we used rose bengal derivative as sensitizer and designed two emitters to investigated this upconversion systems in MeOH/THF solution. The emitter, DMEPA (1,4-bis(2,4,6-trimethyl-3-((10-phenylanthracen-9-yl)-
    ethynyl)phenyl) butane), is composed of two monomers linked by a long carbon chain. The structure was originally considered to improve the collision possibility, so that we can observe delay fluorescence in dilute concentration. And tBEPA (9-(3,3-dimethylbut-1-yn-1-yl)-10-phenylanthrancene) was also designed to decrease the reabsorbance by sensitizer and investigate the photophysical properties in upconversion system.
    In these two systems, we can see delay fluorescence at 450 nm and 425 nm respectively using 568 nm incident radiation. And each of the upconvesion quantum yield is 0.0021 and 0.0052. Moreover, we couldn’t observe intramolecular triplet-triplet annihilation as expected in DMEPA system. The phenomenon may be ascribed to intramolecular self-quenching in dilute concentration.

    摘要.......................................................i Abstract..................................................ii 目錄.....................................................iii 第一章 緒論................................................1 1-1前言...................................................1 1-2歷史與發展.............................................2 1-3光子上轉移的原理及過程.................................3 1-4光敏劑與發射體的特性...................................5 1-5相關文獻回顧...........................................6 1-5-1發光體螢光量子產率的影響............................7 1-5-2敏化劑生命期的影響..................................8 1-5-3三重態能階的探討....................................9 1-5-4薄膜的應用.........................................10 1-6研究動機..............................................12 第二章 結果與討論.........................................14 2-1 分子設計............................................14 2-1-1 敏化劑............................................14 2-1-2 發射體............................................14 2-2 合成策略............................................16 2-2-1 DMEPA合成.........................................16 2-2-1 tBEPA合成.........................................21 2-3 光物理性質探討......................................23 2-3-1 基本光物理性質探討................................23 2-3-1-1敏化劑...........................................23 2-3-1-2發射體...........................................24 2-3-2 上轉移螢光性質探討................................29 2-3-2-1實驗過程與條件..................................29 2-3-2-2 Rose Bengal & DMEPA (System 1).................31 2-3-2-3 Rose Bengal & tBEPA (System 2).................35 2-3-3 分子內和分子間性質探討............................39 第三章 結論...............................................44 第四章 實驗部分...........................................45 4-1 一般敘述:..........................................45 4-2 實驗用藥品..........................................47 4-2-1 合成用藥品.........................................47 4-2-2 測量用藥品........................................48 4-3 實驗步驟............................................49 4-3-1 9-Phenylanthracene (1)...........................49 4-3-2 9-Bromo-10-phenylanthracene (2)..................50 4-3-3 1,4-dimesitylbutane-1,4-dione (3)................51 4-3-4 1,4-dimestiylbutane (4)..........................52 4-3-5 1,4-bis(3-iodo-2,4,6-trimethylphenyl)butane (5)..53 4-3-6 1,4-bis(2,4,6-trimethyl-3-((trimethylsilyl)ethynyl)butane (6)..............................................54 4-3-7 1,4-bis(3-ethynyl-2,4,6-trimethylphenyl)butane (7)55 4-3-8 1,4-bis(2,4,6-trimethyl-3-((10-phenylanthracen-9-yl)ethynyl)- phenyl)butane (DMEPA,8).....................56 4-3-9 9-(3,3-dimethylbut-1-yn-1-yl)-10-phenylanthrancene (tBEPA,9)................................................57 第五章 參考文獻...........................................59 第六章 附錄 (Supporting Information)......................62 6-1 光物理附圖...........................................62 6-2 NMR附圖.............................................69 6-3 X-ray Data...........................................83

    1. Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb,W. W.; Larson, D. R. Science 2003, 300, 1434.
    2. Wang, F.; Liu, X. Chem. Soc. Rev 2009, 38, 976.
    3. Parker, C.A.; Hatchard, C.G. Proc. Chem. Soc., London, 1962, APR, 386.
    4. Parker, C.A.; Joyce, T.A. Chem. Commun. 1968, 13, 749.
    5. J.B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, 1970.
    6. Stelmakh, G.F.; Tsvirko, M.P. Opt. Spectrosk. 1980, 49, 511.
    7. Tanaka, Y.; Azumi, T. Inorg.Chem.1986, 25, 248.
    8. Terenin, A.; Ermolaev, V. Trans. Faraday Soc.1956, 52,1042.
    9. Parker, C.A.; Hatchard, C.G. ; Joyce, T.A. Nature 1965, 205, 1282.
    10. Fulton, R.L.; Gouterman, M. J. Chem. Phys. 1961, 35, 1059.
    11. (a) Islangulov, R.R.; Castellano, F.N. Angew. Chem. Int. Ed. 2006, 45, 5957. (b) Zhao, W.; Castellano, F. N. J. Phys. Chem. A 2006, 110, 11440. (c) Singh-Rachford, T. N.; Islangulov, R. R.; Castellano, F. N. J. Phys. Chem. A 2008, 112, 3906. (d) Singh-Rachford, T. N.; Haefele, A.; Ziessel, R.; Castellano, F. N. J. Am. Chem. Soc. 2008, 130, 16164. (e) Castellano, F. N.; Singh-Rachford, T. N. J. Phys. Chem. A 2009, 113, 5912.
    12. (a) Baluschev, S.; Yakutkin, V.; Wegner, G.; Minch, B.; Miteva, T.; Nelles, G.; Yasuda, A. J. Appl. Phys. 2007, 101, 023101. (b) Baluschev, S.; Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov, S.; Aleshchenkov, S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; Mullen, K.; Wegner, G. Angew. Chem. Int. Ed. 2007, 46, 7693. (c) Baluschev, S.; Yakutkin, V.; Wegner, G.; Miteva, T.; Nelles, G.; Yasuda, A.; Chernov, S.; Aleshchenkov, S.; Cheprakov, A. Appl. Phys. Lett. 2007, 90, 181103. (d) Yakutkin, V.; Aleshchenkov, S.; Chernov, S.; Miteva, T.; Nelles, G.; Cheprakov, A.; Baluschev, S. Chemistry 2008, 14, 9846. (e) Baluschev, S.; Yakutkin, V.; Miteva, T.; Wegner, G.; Roberts, T.; Nelles, G.; Yasuda, A.; Chernov, S.; Aleshchenkov, S.; Cheprakov, A. New J. Phys. 2008, 10, 013007. (f) Miteva, T.; Yakutkin, V.; Nelles, G.; Baluschev, S. New J. Phys. 2008, 10, 013002.
    13. Kozlov, D. V.; Castellano, F. N. Chem Commun 2004, 2860.
    14. Islangulov, R. R.; Kozlov, D. V.; Castellano, F. N. Chem. Commun. 2005, 3776.
    15. Ji, S.; Wu, W.; Guo, H.; Zhao, J. Angew. Chem. Int. Ed. 2011, 50, 1626.
    16. Schmidt, T. W.; Cheng, Y. Y.; Fuckel, B.; Khoury, T.; Clady, R. G. C. R.; Ekins-Daukes, N. J.; Crossley, M. J. J. Phys. Chem. A 2011, 115, 1047.
    17. Keivanidis, P. E.; Baluschev, S.; Miteva, T.; Nelles, G.; Scherf, U.; Yasuda, A.; Wegner, G. Adv Mater 2003, 15, 2095.
    18. Baluschev, S.; Keivanidis, P. E.; Wegner, G.; Jacob, J.; Grimsdale, A. C.; Mullen, K.; Miteva, T.; Yasuda, A.; Nelles, G. Appl Phys Lett 2005, 86, 061904.
    19. Baluschev, S.; Jacob, J.; Avlasevich, Y. S.; Keivanidis, P. E.; Miteva, T.; Yasuda, A.; Nelles, G.; Grimsdale, A. C.; Mullen, K.; Wegner, G. Chemphyschem 2005, 6, 1250.
    20. Laquai, F.; Wegner, G.; Im, C.; Busing, A.; Heun,S. J. Chem. Phys 2005, 123, 074902.
    21. Baluschev, S.; Miteva, T.; Yakutkin, V.; Nelles, G.; Yasuda, A.; Wegner, G. Phys. Rev. Lett. 2006, 97, 143903.
    22. Islangulov, R. R.; Lott, J.; Weder, C.; Castellano, F. N. J. Am. Chem. Soc. 2007, 129, 12652.
    23. Singh-Rachford, T.N.; Castellano, F.N. J. Phys. Chem. A 2008, 112, 3550.
    24. Singh-Rachford, T.N.; Castellano, F.N. Inorg. Chem. 2009, 48, 2541.
    25. Singh-Rachford, T.N.; Castellano, F.N. J. Phys. Chem. Lett. 2010, 1, 195.
    26. Weder, C.; Singh-Rachford, T. N.; Lott, J.; Castellano, F. N. J. Am.Chem. Soc. 2009, 131, 12007.
    27. Chen, H. C.; Hung, C. Y.; Wang, K. H.; Chen, H. L.; Fann, W. S.; Chien, F. C.; Chen, P.; Chow, T. J.; Hsu, C. P.; Sun, S. S. Chem. Commun.2009, 4064.
    28.林志威,「合成新型蒽的衍生物應用於能量上轉移之研究」,國立中央大學,碩士論文,民國99年
    29. Valdesaguilera, O.; Neckers, D. C. Accounts Chem. Res. 1989, 22, 171.
    30. Shi. J.; Zhang, X.; Neckers, D. C. J. Org. Chem. 1992, 57, 4418.
    31. Neckers, D. C. J. Photoch. Photobio. A 1989, 47, 1.
    32. Mosnaim, D.; Nonhebel, D. C.; Russell, J. A. Tetrahedron 1969, 25, 3485.
    33. Stewart, F. H. C. Aust. J. Chem. 1960, 13, 478.
    34. Moorthy, J. N.; Natarajan P. Cryst. Growth Des., 2008, 8, 3360.
    35. Dehmlow, E. V.; Niemann, T.; Kraft, A. Synthetic Commun. 1996, 26, 1467.
    36. Moorthy, J. N.; Venkatakrishnan, P.; Natarajan, P.; Huang, D. F.; Chow, T. J. J. Am. Chem. Soc. 2008, 130, 17320.
    37. Bernard Valeur. Molecular Fluorescene, WILEY-VCH, 2002.

    QR CODE
    :::