| 研究生: |
蘇伯罕 Mohammed Abdul Athick Abdul Subhan |
|---|---|
| 論文名稱: |
空間域濾波器與最佳化分割演算法結合 定義黑潮範圍及綜合趨勢分析 Combination of Spatial Domain Filters and Optimized Segmentation Algorithm to Delineate Kuroshio Extent and Comprehensive Analysis of Trends |
| 指導教授: |
李時雨
Shih-Yu Lee 劉千義 Chian-Yi Liu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 國際研究生博士學位學程 Taiwan international graduate program - Earth system science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 影像分割 、黑潮 、海流 、逐像素趨勢 、時空趨勢 、時間序列分解 、衛星遙感 、海洋學參數 、漂移資料 、太空濾波器 、資料分類 、黑 潮偵測 |
| 外文關鍵詞: | pixel-by-pixel trend, spatiotemporal trend, time series decomposition, spatial filters, Kuroshio detection, oceanographic parameters, drifter data |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大多數研究都是根據在標準網格位置或沿特定橫斷面測量的定量值來調查黑潮的。然而,本研究
將黑潮與其周邊水域區分開來,並利用衛星資料分析了 1993 年至 2020 年從單一網格到流域規模
的表面流趨勢。這種獨特的方法結合了分割和影像處理。當方差擬合優度大於 0.8 時,它比傳統
的閾值/直方圖技術更能有效地描繪出不均勻的黑潮範圍,對海洋學和氣候研究有所貢獻。
從劃定的黑潮來看,整體的流速呈現減弱的趨勢。為了分析其變化趨勢是均勻的還是隨區域變化
的,本研究根據水文特徵將已劃定的黑潮劃分為 5 個區域。使用三種統計方法、兩種頻率方法和
一種貝葉斯 (bayesian) 方法,以區域平均值和逐個像素為基礎分析其趨勢。值得注意的是呂宋島
和台灣沿岸的風力減弱。相反,吐噶喇海峽 (Tokara Strait) 至名古屋及名古屋-150°E 方向的風力
增強。有趣的是,黑潮南流-II 處存在著由減弱到加強的過渡區。在計算效率方面,檢測斷點和估
計趨勢段(DBEST)和小波轉換(WT)優於其他方法。集合經驗模態分解 (EEMD) 和季節性趨
勢 Loess (STL) 具有相似的效率水準。加性季節和趨勢斷點 (BFAST) 是為線性趨勢而設計的,而
EEMD 適用於一般趨勢。突變、季節性變化和趨勢的貝葉斯估計器 (BEAST) 結合了多種模型以
減少過度擬合,並從 GlobCurrent 和漂移數據中產生高度相關的趨勢。本研究探討結合空間濾波
演算法擷取海面流的適用性。因此,對光柵濾波器進行了 80-13,505 張每日影像的測試,以檢測
每週、季節和氣候尺度上的黑潮 (KC)。所選的柵格濾波器包括卷積、拉普拉斯、北梯度、銳化、
最小/最大、直方圖均衡化、標準差和自然斷點。此外,還採用了海面流、海面溫度(SST)、海
面高度(SSH)等常規資料集,以及總熱通量、表面密度(SSD)和鹽度(SSS)等非常規資料。
此外,由於很少有研究表明葉綠素-ff 可以作為夏季 SST 的替代物來提取 KC,因此納入了有爭議
的水色數據。有趣的是,只有結合演算法,過濾器的性能才是統一的,並且在季節和氣候尺度上
都能蓬勃發展. 與使用單獨的濾鏡和指定值譜來識別黑潮特徵的典型場景相反,本研究採用了不
同的方法。它研究了根據 SST、SSH、總熱通量、SSS、SSD、葉綠素-ff 和海面流計算出的黑潮中
心線之間的相關性。從台灣東北部經吐噶喇海峽到日本南部,黑潮中心線各段觀測到的熱通量、
葉綠素-ff 和表層鹽度資料有偏差,這很有啟發性。這種相關性凸顯了各種海洋數據的相互聯繫,
有助於更深入地了解黑潮系統。
Most studies investigated Kuroshio on quantitative values measured at standard grid locations or
along a transect. However, this research delineates Kuroshio from its surrounding waters, and
surface current trends are analyzed from 1993 to 2020, extending from a single location to a basin
scale. This unique approach combines segmentation and image processing. When integrated with
the goodness of variance fit greater than 0.8, it proves more efficacious than conventional threshold/
histogram techniques in delineating patchy Kuroshio extent contributing to oceanography and
climate studies.
The generalized trend from delineated Kuroshio exhibited a systemwide weakening. To analyze
whether the trend is uniform or varies with Latitude, delineated Kuroshio is divided into five
sections based on the hydrological characteristics. The trend was analyzed using three statistical,
two frequency, and one Bayesian approach on a regional mean and a pixel-by-pixel basis. Weakening
in Luzon and along Taiwan is worth noting.
In contrast, a strengthening in the Tokara Strait to Nagoya and Nagoya-150°E. Interestingly, the
transition zone from weakening to strengthening in the Kuroshio South-II. Regarding computational efficiency, Detecting Breakpoints and Estimating Segments in Trend (DBEST) and Wavelet
Transform (WT) outperformed the other methods. Ensemble Empirical Mode Decomposition
(EEMD) and Seasonal Trend Loess (STL) have similar levels of efficiency. Breaks for Additive
Season and Trend (BFAST) is designed for a linear trend, while EEMD is suitable for a general
trend. The Bayesian Estimator of Abrupt, Seasonal Change and Trend (BEAST) combines multiple models to reduce overfitting and produces highly correlated trends from GlobCurrent and
drifter data.
This research also investigates the applicability of combining spatial filter's algorithm to extract
surface ocean current. Accordingly, the raster filters were tested on 80–13,505 daily images to
detect Kuroshio Current (KC) on weekly, seasonal, and climatological scales. The selected raster
filters are convolution, Laplacian, north gradient, sharpening, min/max, histogram equalization,
standard deviation, and natural break. In addition, conventional data sets of sea surface currents,
sea surface temperature (SST), sea surface height (SSH), and non-conventional data such as total
heat flux, surface density (SSD), and salinity (SSS) were employed. Moreover, controversial data on ocean color are included because very few studies revealed that chlorophyll-α is a proxy for
SST in the summer to extract KC. Interestingly, the performance of filters is uniform and thriving
for seasonal and on a climatological scale only by combining the algorithms.
Contrary to the typical scenario of identifying Kuroshio signatures using an individual filter and
by designating a value spectrum, this research takes a different approach. It investigates the correlation between Kuroshio's centerlines computed from SST, SSH, total heat flux, SSS, SSD,
chlorophyll-α, and sea surface currents. The deviations observed in the various segments of
Kuroshio's centerline extracted from heat flux, chlorophyll-α, and SSS flowing across Tokara
Strait from northeast Taiwan to south Japan are enlightening. This correlation highlights the interconnectedness of various oceanographic data, providing a deeper understanding of the Kuroshio
system.
Abdul Athick, A. M., Shankar, K., & Naqvi, H. R. (2019). Data on time series analysis of
land surface temperature variation in response to vegetation indices in twelve wereda of
ethiopia using mono window, split window algorithm and spectral radiance model. Data
in Brief, 27, 104773. Retrieved from https://www.sciencedirect.com/science/
article/pii/S235234091931128X doi: https://doi.org/10.1016/j.dib.2019.104773
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., … others
(2015). Improved sea level record over the satellite altimetry era (1993–2010) from the
climate change initiative project. Ocean Science, 11(1), 67–82.
Acar, R., & Şenocak, S. (2004). Precipitation trends for western turkey in associated
with north atlantic oscillation (nao) index. In Available at: iahs. info/conferences/
cr2010/2010.../265. pd.
Ahmed, S. M. (2014). Assessment of irrigation system sustainability using the theil–sen
estimator of slope of time series. Sustainability science, 9(3), 293–302.
Akitomo, K., Masuda, S., & Awaji, T. (1997). Kuroshio path variation south of japan: Stability of the paths in a multiple equilibrium regime. Oceanographic Literature Review,
44(11), 1226–1227.
Al-Amri, S. S., Kalyankar, N., & Khamitkar, S. (2010a). Contrast stretching enhancement
in remote sensing image. International Journal of Computer Science Issues (IJCSI),
7(2), 26.
Al-Amri, S. S., Kalyankar, N., & Khamitkar, S. (2010b). Image segmentation by using edge
detection. International journal on computer science and engineering, 2(3), 804–807.
Al-Amri, S. S., Kalyankar, N., & Khamitkar, S. (2011). Contrast stretching enhancement in
remote sensing image. BIOINFO Sens. Netw, 1, 6–9.
Alcaras, E., Parente, C., & Vallario, A. (2021). Automation of pan-sharpening methods for
pléiades images using gis basic functions. Remote Sensing, 13(8), 1550.
Anandhi, A., Perumal, S., Gowda, P. H., Knapp, M., Hutchinson, S., Harrington, J., … Rice,
C. W. (2013). Long-term spatial and temporal trends in frost indices in kansas, usa.
Climatic Change, 120(1), 169–181.
Andres, M., Jan, S., Sanford, T. B., Mensah, V., Centurioni, L. R., & Book, J. W. (2015).
Mean structure and variability of the kuroshio from northeastern taiwan to southwestern japan. Oceanography, 28(4), 84–95.
As, M. A. A., & Lee, S.-Y. (2022). A combination of spatial domain filters to detect surface
ocean current from multi-sensor remote sensing data. Remote Sensing, 14(2), 332.
AS, M. A. A., & Lee, S.-Y. (2022a). A combination of spatial domain filters to detect surface
ocean current from multi-sensor remote sensing data. Remote Sensing, 14(2). Retrieved
from https://www.mdpi.com/2072-4292/14/2/332 doi: 10.3390/rs14020332
AS, M. A. A., & Lee, S.-Y. (2022b). Comprehensive analysis of ocean current and sea surface
temperature trend under global warming hiatus of kuroshio extent delineated using a
combination of spatial domain filters. Geomatics, 2(4), 415–434.
Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend
analysis of rainfall and temperature in northcentral ethiopia: A case study in woleka
sub-basin. Weather and climate extremes, 19, 29–41.
Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., &
Gombos, D. (2011). A cross-calibrated, multiplatform ocean surface wind velocity
product for meteorological and oceanographic applications. Bulletin of the American
Meteorological Society, 92(2), 157–174.
Ay, M., & Kisi, O. (2015). Investigation of trend analysis of monthly total precipitation by
an innovative method. Theoretical and Applied Climatology, 120(3), 617–629.
Aza, M., Papadopoulou, M., Voutsa, D., & Lafazani, P. (n.d.). Creation of a gis tool for the
selection of a classification method, the statistical assessment of the method's class
intervals and its implementation in choroplethic mapping.
Azzali, S., & Menenti, M. (2000). Mapping vegetation-soil-climate complexes in southern
africa using temporal fourier analysis of noaa-avhrr ndvi data. International Journal
of Remote Sensing, 21(5), 973–996.
Bao, B., & Ren, G. (2014). Climatological characteristics and long-term change of sst over
the marginal seas of china. Continental Shelf Research, 77, 96–106.
Barkley, R. (1970). The kuroshio current. Science Journal, 6, 54–60.
Barkley, R. A. (1970). The kuroshio current. Science Journal, 6, 54–60.
Barnes, M. A., & Rautenbach, C. (2020). Toward operational wave-current interactions
over the agulhas current system. Journal of Geophysical Research: Oceans, 125(7),
e2020JC016321.
Beardsley, R. C., Limeburner, R., & Owens, W. B. (2004). Drifter measurements of surface
currents near marguerite bay on the western antarctic peninsula shelf during austral
summer and fall, 2001 and 2002. Deep Sea Research Part II: Topical Studies in Oceanography, 51(17-19), 1947–1964.
Belkin, I., & Cornillon, P. (2004). Surface thermal fronts of the okhotsk sea. Pacific
Oceanography, 2(1-2), 6–19.
Belkin, I., & Cornillon, P. (2005). Bering sea thermal fronts from pathfinder data: Seasonal
and interannual variability. Pacific Oceanography, 3(1), 6–20.
Belkin, I., Cornillon, P., & Shan, Z. (2001). Global survey of ocean fronts from pathfinder
sst data. In Oceanography society meeting (p. 10).
Belkin, I., & Mikhailichenko, Y. G. (1986). Thermohaline structure of the frontal zone of
the northwest pacific-ocean at 160-degrees-e. Okeanologiya, 26(1), 70–72.
Belkin, I., Shan, Z., & Cornillon, P. (1998). Global survey of oceanic fronts from pathfinder
sst and in-situ data. Eos Trans. AGU, 79(45).
Belkin, I. M. (2009). Rapid warming of large marine ecosystems. Progress in Oceanography,
81(1), 207-213. Retrieved from https://www.sciencedirect.com/science/article/
pii/S0079661109000317 (Comparative Marine Ecosystem Structure and Function:
Descriptors and Characteristics) doi: https://doi.org/10.1016/j.pocean.2009.04.011
Belkin, I. M., Cornillon, P., & Ullman, D. (2003). Ocean fronts around alaska from satellite
sst data. In Proceedings of the american meteorological society's 7th conference on
the polar meteorology and oceanography and joint symposium on high-latitude climate
variations, 12á16 may, hyannis, ma. paper (Vol. 12).
Belkin, I. M., & O’Reilly, J. E. (2009). An algorithm for oceanic front detection in chlorophyll
and sst satellite imagery. Journal of Marine Systems, 78(3), 319–326.
Ben Abbes, A., Bounouh, O., Farah, I. R., de Jong, R., & Martínez, B. (2018). Comparative
study of three satellite image time-series decomposition methods for vegetation change
detection. European Journal of Remote Sensing, 51(1), 607–615.
Berhane, A., Hadgu, G., Worku, W., & Abrha, B. (2020). Trends in extreme temperature
and rainfall indices in the semi-arid areas of western tigray, ethiopia. Environmental
Systems Research, 9(1), 1–20.
Biazar, S. M., & Ferdosi, F. B. (2020). An investigation on spatial and temporal trends in
frost indices in northern iran. Theoretical and Applied Climatology, 141(3), 907–920.
Bond, N. A., & Cronin, M. F. (2008). Regional weather patterns during anomalous air–sea
fluxes at the kuroshio extension observatory (keo). Journal of climate, 21(8), 1680–
1697.
Brandt, M., Verger, A., Diouf, A. A., Baret, F., & Samimi, C. (2014). Local vegetation
trends in the sahel of mali and senegal using long time series fapar satellite products
and field measurement (1982–2010). Remote Sensing, 6(3), 2408–2434.
Breaker, L. C., Mavor, T. P., & Broenkow, W. W. (2005). Mapping and monitoring largescale ocean fronts off the california coast using imagery from the goes-10 geostationary
satellite.
Bruzzone, L., Smits, P. C., & Tilton, J. C. (2003). Foreword special issue on analysis of
multitemporal remote sensing images. IEEE Transactions on Geoscience and Remote
Sensing, 41(11), 2419–2422.
Cai, S., & Liu, D. (2015). Detecting change dates from dense satellite time series using a
sub-annual change detection algorithm. Remote Sensing, 7(7), 8705–8727.
Caiyun, Z., & Ge, C. (2006). Sst variations of the kuroshio from avhrr observation. Chinese
Journal of Oceanology and Limnology, 24(4), 345–351.
Callies, J., Ferrari, R., Klymak, J. M., & Gula, J. (2015). Seasonality in submesoscale
turbulence. Nature communications, 6(1), 6862.
Campos, A. N., & Di Bella, C. M. (2012). Multi-temporal analysis of remotely sensed
information using wavelets (Tech. Rep.). Scientific Research Publishing.
Cancet, M., Griffin, D., Cahill, M., Chapron, B., Johannessen, J., & Donlon, C. (2019).
Evaluation of globcurrent surface ocean current products: A case study in australia.
Remote sensing of environment, 220, 71–93.
Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence(6), 679–698.
Carton, J., Eisner, S., Leuliette, E., Byrne, D., & Grodsky, S. (2022). The new daily
global mesoscale blended ocean surface current (bosc) product. In 2022 ocean surface
topography science team meeting (p. 225).
Castelao, R. M., Mavor, T. P., Barth, J. A., & Breaker, L. C. (2006). Sea surface temperature
fronts in the california current system from geostationary satellite observations. Journal
of Geophysical Research: Oceans, 111(C9).
Cayula, J.-F., & Cornillon, P. (1992). Edge detection algorithm for sst images. Journal of
atmospheric and oceanic technology, 9(1), 67–80.
Cayula, J.-F., & Cornillon, P. (1995). Multi-image edge detection for sst images. Journal of
Atmospheric and Oceanic Technology, 12(4), 821–829.
Cayula, J.-F., & Cornillon, P. (1996). Cloud detection from a sequence of sst images. Remote
Sensing of Environment, 55(1), 80–88.
Cayula, J.-F., Cornillon, P., Holyer, R., & Peckinpaugh, S. (1991). Comparative study of
two recent edge-detection algorithms designed to process sea-surface temperature fields.
IEEE transactions on geoscience and remote sensing, 29(1), 175–177.
Chang, Y., Shih, Y.-Y., Tsai, Y.-C., Lu, Y.-H., Liu, J. T., Hsu, T.-Y., … Hung, C.-C. (2022).
Decreasing trend of kuroshio intrusion and its effect on the chlorophyll-a concentration
in the luzon strait, south china sea. GIScience & Remote Sensing, 59(1), 633–647.
Chen, C., Wang, G., Xie, S.-P., & Liu, W. (2019). Why does global warming weaken the
gulf stream but intensify the kuroshio? Journal of Climate, 32(21), 7437–7451.
Chen, X., & Tung, K.-K. (2014). Varying planetary heat sink led to global-warming slowdown
and acceleration. Science, 345(6199), 897–903.
Choi, J.-G., Kim, D., Shin, J., Jang, S.-W., Lippmann, T. C., Jo, Y.-H., … Cho, S.-W.
(2023). New diagnostic sea surface current fields to trace floating algae in the yellow
sea. Marine Pollution Bulletin, 195, 115494.
Ciavatta, S., Kay, S., Saux-Picart, S., Butenschön, M., & Allen, J. (2016). Decadal reanalysis
of biogeochemical indicators and fluxes in the north west european shelf-sea ecosystem.
Journal of Geophysical Research: Oceans, 121(3), 1824–1845.
Civco, D. L. (1993). Artificial neural networks for land-cover classification and mapping.
International journal of geographical information science, 7(2), 173–186.
Clarke, R. T. (2013). How should trends in hydrological extremes be estimated? Water
Resources Research, 49(10), 6756–6764.
Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). Stl: A seasonaltrend decomposition. J. Off. Stat, 6(1), 3–73.
Coppin, P., Lambin, E., Jonckheere, I., & Muys, B. (2002). Digital change detection methods
in natural ecosystem monitoring: A review. Analysis of multi-temporal remote sensing
images, 3–36.
De Beurs, K., & Henebry, G. (2005). A statistical framework for the analysis of long image
time series. International Journal of Remote Sensing, 26(8), 1551–1573.
De Oliveira, T., de Oliveira, L. T., de Carvalho, L. M. T., Martinhago, A. Z., & de Freitas,
S. G. (2009). Comparison of modis ndvi time series filtering by wavelets and fourier
analysis to generate vegetation signatures. In Proc. anais xiv simposio brasileiro de
sensoramento remoto, natal, brazil, 25– 30 april (pp. 1465–1472).
Douglas, B., McAdoo, D., & Cheney, R. (1987). Oceanographic and geophysical applications
of satellite altimetry. Reviews of Geophysics, 25(5), 875–880.
Droghei, R., Buongiorno Nardelli, B., & Santoleri, R. (2018). A new global sea surface
salinity and density dataset from multivariate observations (1993–2016). Frontiers in
Marine Science, 5, 84.
Droghei, R., Nardelli, B. B., & Santoleri, R. (2016). Combining in situ and satellite observations to retrieve salinity and density at the ocean surface. Journal of Atmospheric
and Oceanic Technology, 33(6), 1211–1223.
Dunstan, P. K., Foster, S. D., King, E., Risbey, J., O'Kane, T. J., Monselesan, D., …
Thompson, P. A. (2018). Global patterns of change and variation in sea surface
temperature and chlorophyll a. Scientific reports, 8(1), 1–9.
Easterling, D. R., & Wehner, M. F. (2009). Is the climate warming or cooling? Geophysical
Research Letters, 36(8).
Ebuchi, N., & Hanawa, K. (2003). Influence of mesoscale eddies on variations of the kuroshio
path south of japan. Journal of oceanography, 59(1), 25–36.
England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., …
Santoso, A. (2014). Recent intensification of wind-driven circulation in the pacific and
the ongoing warming hiatus. Nature climate change, 4(3), 222–227.
Erol, H., & Akdeniz, F. (1998). A new supervised classification method for quantitative analysis of remotely-sensed multi-spectral data. International Journal of Remote Sensing,
19(4), 775–782.
Fang, X., Zhu, Q., Ren, L., Chen, H., Wang, K., & Peng, C. (2018). Large-scale detection of
vegetation dynamics and their potential drivers using modis images and bfast: A case
study in quebec, canada. Remote Sensing of Environment, 206, 391–402.
Feng, H., Vandemark, D., Levin, J., & Wilkin, J. (2018). Examining the accuracy of
globcurrent upper ocean velocity data products on the northwestern atlantic shelf.
Remote Sensing, 10(8), 1205.
Feng, M., Mitsudera, H., & Yoshikawa, Y. (2000a). Structure and variability of the kuroshio
current in tokara strait. Journal of Physical Oceanography, 30(9), 2257–2276.
Feng, M., Mitsudera, H., & Yoshikawa, Y. (2000b). Structure and variability of the kuroshio
current in tokara strait. Journal of Physical Oceanography, 30(9), 2257–2276.
Fisher, W. D. (1958). On grouping for maximum homogeneity. Journal of the American
statistical Association, 53(284), 789–798.
Flandrin, P., Gonçalves, P., & Rilling, G. (2014). Emd equivalent filter banks, from interpretation to applications. In Hilbert–huang transform and its applications (pp. 99–116).
World Scientific.
Flandrin, P., Rilling, G., & Goncalves, P. (2004). Empirical mode decomposition as a filter
bank. IEEE signal processing letters, 11(2), 112–114.
Flygare, A.-M. (1997). A comparison of contextual classification methods using landsat tm.
International Journal of Remote Sensing, 18(18), 3835–3842.
Ford, D., & Barciela, R. (2017). Global marine biogeochemical reanalyses assimilating two
different sets of merged ocean colour products. Remote Sensing of Environment, 203,
40–54.
Frankignoul, C., Deshayes, J., & Curry, R. (2009). The role of salinity in the decadal
variability of the north atlantic meridional overturning circulation. Climate dynamics,
33(6), 777–793.
Frankignoul, C., & Sennéchael, N. (2007). Observed influence of north pacific sst anomalies
on the atmospheric circulation. Journal of Climate, 20(3), 592–606.
Fu, L.-L., & Cheney, R. E. (1995). Application of satellite altimetry to ocean circulation
studies: 1987–1994. Reviews of Geophysics, 33(S1), 213–223.
Fu, L.-L., Christensen, E. J., Yamarone Jr, C. A., Lefebvre, M., Menard, Y., Dorrer, M., &
Escudier, P. (1994). Topex/poseidon mission overview. Wiley Online Library.
Garcia-Eidell, C., Comiso, J. C., Dinnat, E., & Brucker, L. (2019). Sea surface salinity
distribution in the southern ocean as observed from space. Journal of Geophysical
Research: Oceans, 124(5), 3186–3205.
Gençay, R., Selçuk, F., & Whitcher, B. J. (2001). An introduction to wavelets and other
filtering methods in finance and economics. Elsevier.
Getachew, B. (2018). Trend analysis of temperature and rainfall in south gonder zone,
anhara ethiopia. Journal of Degraded and Mining Lands Management, 5(2), 1111.
Golian, S., Saghafian, B., Sheshangosht, S., & Ghalkhani, H. (2010). Comparison of classification and clustering methods in spatial rainfall pattern recognition at northern iran.
Theoretical and Applied Climatology, 102, 319–329.
Goodchild, M., Haining, R., & Wise, S. (1992). Integrating gis and spatial data analysis:
problems and possibilities. International journal of geographical information systems,
6(5), 407–423.
Guo, X., Miyazawa, Y., & Yamagata, T. (2006). The kuroshio onshore intrusion along the
shelf break of the east china sea: The origin of the tsushima warm current. Journal of
Physical Oceanography, 36(12), 2205–2231.
Hamed, K. H., & Rao, A. R. (1998). A modified mann-kendall trend test for autocorrelated
data. Journal of hydrology, 204(1-4), 182–196.
Han, G., & Huang, W. (2008). Pacific decadal oscillation and sea level variability in the bohai,
yellow, and east china seas. Journal of Physical Oceanography, 38(12), 2772–2783.
Hansen, J., Sato, M., Kharecha, P., & Von Schuckmann, K. (2011). Earth’s energy imbalance
and implications. Atmospheric Chemistry and Physics, 11(24), 13421–13449.
Hanzawa, M. (1981). Studies on the mechanism of formation of cold water in the okhotsk
sea. Report of Joint-Research on the Okhotsk Sea, 66–131.
He, Y., Wang, X., Li, D., Xie, Z., & Chai, C. (2021). Typhoon disaster damage assessment
and disaster situation web visu-alization based on npp-viirs nighttime light remote
sensing. In Aiipcc 2021; the second international conference on artificial intelligence,
information processing and cloud computing (pp. 1–8).
Hickox, R., Belkin, I., Cornillon, P., & Shan, Z. (2000). Climatology and seasonal variability of ocean fronts in the east china, yellow and bohai seas from satellite sst data.
Geophysical Research Letters, 27(18), 2945–2948.
Holyer, R. J., & Peckinpaugh, S. H. (1989). Edge detection applied to satellite imagery of
the oceans. IEEE transactions on geoscience and remote sensing, 27(1), 46–56.
Hornik, K. (2001). strucchange: An r package for testing for structural change in linear
regression models.
Hsin, Y.-C., Qiu, B., Chiang, T.-L., & Wu, C.-R. (2013). Seasonal to interannual variations
in the intensity and central position of the surface kuroshio east of taiwan. Journal of
Geophysical Research: Oceans, 118(9), 4305–4316.
Hsin, Y.-C., Wu, C.-R., & Shaw, P.-T. (2008). Spatial and temporal variations of the
kuroshio east of taiwan, 1982–2005: A numerical study. Journal of Geophysical Research: Oceans, 113(C4).
Hsiung, K.-M., Lin, Y.-T., & Han, Y.-S. (2022). Current dependent dispersal characteristics
of japanese glass eel around taiwan. Journal of Marine Science and Engineering, 10(1),
98.
Hu, D., Wu, L., Cai, W., Gupta, A. S., Ganachaud, A., Qiu, B., … others (2015). Pacific
western boundary currents and their roles in climate. Nature, 522(7556), 299–308.
Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., … Zhang,
H.-M. (2015). Extended reconstructed sea surface temperature version 4 (ersst. v4).
part i: Upgrades and intercomparisons. Journal of climate, 28(3), 911–930.
Huang, B., L’Heureux, M., Hu, Z.-Z., & Zhang, H.-M. (2016). Ranking the strongest enso
events while incorporating sst uncertainty. Geophysical Research Letters, 43(17), 9165–
9172.
Huang, N. E., Chern, C. C., Huang, K., Salvino, L. W., Long, S. R., & Fan, K. L. (2001).
A new spectral representation of earthquake data: Hilbert spectral analysis of station
tcu129, chi-chi, taiwan, 21 september 1999. Bulletin of the Seismological Society of
America, 91(5), 1310–1338.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … Liu, H. H.
(1998). The empirical mode decomposition and the hilbert spectrum for nonlinear and
non-stationary time series analysis. Proceedings of the Royal Society of London. Series
A: mathematical, physical and engineering sciences, 454(1971), 903–995.
Hughes, R. N., Hughes, D., & Smith, I. P. (2013). Oceans and marine resources in a changing
climate. Oceanography and marine biology: an annual review, 51, 71–192.
Hutchinson, J. S., Jacquin, A., Hutchinson, S. L., & Verbesselt, J. (2015). Monitoring
vegetation change and dynamics on us army training lands using satellite image time
series analysis. Journal of environmental management, 150, 355–366.
Imai, M. (1988). Seasonal variation of chlorophyll-a in the seas around japan. The Oceanogr.
Mag., 38, 23–32.
Imawaki, S., Uchida, H., Ichikawa, H., Fukasawa, M., Umatani, S.-i., & Group, A. (2001).
Satellite altimeter monitoring the kuroshio transport south of japan. Geophysical Research Letters, 28(1), 17–20.
Jacquin, A., Sheeren, D., & Lacombe, J.-P. (2010). Vegetation cover degradation assessment
in madagascar savanna based on trend analysis of modis ndvi time series. International
Journal of Applied Earth Observation and Geoinformation, 12, S3–S10.
Jamali, S., Jönsson, P., Eklundh, L., Ardö, J., & Seaquist, J. (2015). Detecting changes
in vegetation trends using time series segmentation. Remote Sensing of Environment,
156, 182–195.
Jenks, G. F. (1967). The data model concept in statistical mapping. International yearbook
of cartography, 7, 186–190.
Ji, C., & Zhang, Y. (2019). Investigation of the chlorophyll-a concentration response to sea
surface temperature (sst) in the east china sea. In Igarss 2019-2019 ieee international
geoscience and remote sensing symposium (pp. 8003–8006).
Jiang, B., Liang, S., Wang, J., & Xiao, Z. (2010). Modeling modis lai time series using three
statistical methods. Remote Sensing of Environment, 114(7), 1432–1444.
Johannessen, J., Chapron, B., Collard, F., Rio, M., Piollé, J., Gaultier, L., … others (2016).
Globcurrent: Multisensor synergy for surface current estimation..
Jönsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to time-series
of satellite sensor data, ieee t. geosci. remote, 40, 1824–1832.
Kahru, M., Håkansson, B., & Rud, O. (1995). Distributions of the sea-surface temperature
fronts in the baltic sea as derived from satellite imagery. Continental Shelf Research,
15(6), 663–679.
Katsumi, T. (2006). Oceanic biology: Spawning of eels near a seamount. Nature, 439(7079),
929.
Kawabe, M. (1987). Spectral properties of sea level and time scales of kuroshio path variations. Journal of the Oceanographical Society of Japan, 43(2), 111–123.
Kawabe, M. (1995). Variations of current path, velocity, and volume transport of the
kuroshio in relation with the large meander. Journal of physical oceanography, 25(12),
3103–3117.
Kawamura, H., Mizuno, K., & Toba, Y. (1986). Formation process of a warm-core ring in
the kuroshio-oyashio frontal zone—december 1981–october 1982. Deep Sea Research
Part A. Oceanographic Research Papers, 33(11-12), 1617–1640.
Kawarada, Y. (1965). Diatoms in the kuroshio waters neighboring japan. Inform. Bull.
Planktol. Japan, 12, 8–16.
Kazmin, A. S., & Rienecker, M. M. (1996). Variability and frontogenesis in the large-scale
oceanic frontal zones. Journal of Geophysical Research: Oceans, 101(C1), 907–921.
Kelly, K. A., Small, R. J., Samelson, R., Qiu, B., Joyce, T. M., Kwon, Y.-O., & Cronin,
M. F. (2010). Western boundary currents and frontal air–sea interaction: Gulf stream
and kuroshio extension. Journal of Climate, 23(21), 5644–5667.
Khaliq, M. N., Ouarda, T. B., Gachon, P., Sushama, L., & St-Hilaire, A. (2009). Identification of hydrological trends in the presence of serial and cross correlations: A review
of selected methods and their application to annual flow regimes of canadian rivers.
Journal of Hydrology, 368(1-4), 117–130.
Kida, S., Takayama, K., Sasaki, Y. N., Matsuura, H., & Hirose, N. (2021). Increasing trend
in japan sea throughflow transport. Journal of Oceanography, 77, 145–153.
Kim, Y. Y., Qu, T., Jensen, T., Miyama, T., Mitsudera, H., Kang, H.-W., & Ishida, A.
(2004). Seasonal and interannual variations of the north equatorial current bifurcation
in a high-resolution ogcm. Journal of Geophysical Research: Oceans, 109(C3).
Kisi, O. (2015). An innovative method for trend analysis of monthly pan evaporations.
Journal of Hydrology, 527, 1123–1129.
Köhl, M., Lister, A., Scott, C. T., Baldauf, T., & Plugge, D. (2011). Implications of sampling
design and sample size for national carbon accounting systems. Carbon Balance and
Management, 6(1), 1–20.
Konda, M., Ichikawa, H., Tomita, H., & Cronin, M. F. (2010). Surface heat flux variations
across the kuroshio extension as observed by surface flux buoys. Journal of climate,
23(19), 5206–5221.
Konda, M., Imasato, N., & Shibata, A. (1996). A new method to determine near-sea surface
air temperature by using satellite data. Journal of Geophysical Research: Oceans,
101(C6), 14349–14360.
Kong, Y.-l., Meng, Y., Li, W., Yue, A.-z., & Yuan, Y. (2015). Satellite image time series
decomposition based on eemd. Remote Sensing, 7(11), 15583–15604.
Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial pacific
surface cooling. nature, 501(7467), 403–407.
Kostianoy, A. G., Ginzburg, A. I., Frankignoulle, M., & Delille, B. (2004). Fronts in the
southern indian ocean as inferred from satellite sea surface temperature data. Journal
of Marine Systems, 45(1-2), 55–73.
Kubota, M., Kano, A., Muramatsu, H., & Tomita, H. (2003). Intercomparison of various
surface latent heat flux fields. Journal of climate, 16(4), 670–678.
Kuriqi, A., Ali, R., Pham, Q. B., Montenegro Gambini, J., Gupta, V., Malik, A., … others
(2020). Seasonality shift and streamflow flow variability trends in central india. Acta
Geophysica, 68(5), 1461–1475.
Kuroda, K. (1987). Chlorophyll distribution in the kuroshio region, south of japan. kousuiken
note. Sora to Umi, 9, 19–29.
Kwon, Y.-O., Alexander, M. A., Bond, N. A., Frankignoul, C., Nakamura, H., Qiu, B.,
& Thompson, L. A. (2010). Role of the gulf stream and kuroshio–oyashio systems
in large-scale atmosphere–ocean interaction: A review. Journal of Climate, 23(12),
3249–3281.
Lacorata, G., Corrado, R., Falcini, F., & Santoleri, R. (2019). Fsle analysis and validation
of lagrangian simulations based on satellite-derived globcurrent velocity data. Remote
sensing of environment, 221, 136–143.
Lagerloef, G. S., Mitchum, G. T., Lukas, R. B., & Niiler, P. P. (1999). Tropical pacific
near-surface currents estimated from altimeter, wind, and drifter data. Journal of
Geophysical Research: Oceans, 104(C10), 23313–23326.
Larrañaga, M., Osuna, P., Esquivel-Trava, B., Ocampo-Torres, F. J., Rascle, N., GarcíaNava, H., & Moulin, A. (2023). Comparing globcurrent dataset with numerical results
from a high-resolution implementation of the polcoms-wam coupled system under a
strong gap wind over the gulf of tehuantepec. Meteorology and Atmospheric Physics,
135(3), 29.
Legeckis, R., Brown, C. W., & Chang, P. S. (2002). Geostationary satellites reveal motions
of ocean surface fronts. Journal of Marine Systems, 37(1-3), 3–15.
Le Traon, P., & Hernandez, F. (1992). Mapping the oceanic mesoscale circulation: Validation of satellite altimetry using surface drifters. Journal of Atmospheric and Oceanic
Technology, 9(5), 687–698.
Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia, H. E., & Mishonov, A. V.
(2009). Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophysical Research Letters, 36(7).
Li, J., Li, Z.-L., Wu, H., & You, N. (2022). Trend, seasonality, and abrupt change detection
method for land surface temperature time-series analysis: Evaluation and improvement.
Remote Sensing of Environment, 280, 113222.
Li, Y., & He, R. (2014). Spatial and temporal variability of sst and ocean color in the gulf
of maine based on cloud-free sst and chlorophyll reconstructions in 2003–2012. Remote
Sensing of Environment, 144, 98–108.
Liang, W.-D., Tang, T., Yang, Y., Ko, M., & Chuang, W.-S. (2003). Upper-ocean currents
around taiwan. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7),
1085–1105.
Liu, Y., Tang, D., Tang, S., Morozov, E., Liang, W., & Sui, Y. (2020). A case study of
chlorophyll a response to tropical cyclone wind pump considering kuroshio invasion
and air-sea heat exchange. Science of the Total Environment, 741, 140290.
Liu, Z., & Hou, Y. (2011). Kuroshio front in the east china sea from satellite sst and remote
sensing data. IEEE Geoscience and Remote Sensing Letters, 9(3), 517–520.
Liu, Z., & Wu, L. (2004). Atmospheric response to north pacific sst: The role ofocean–
atmosphere coupling. Journal of climate, 17(9), 1859–1882.
Liu, Z.-J., Zhu, X.-H., Nakamura, H., Nishina, A., Wang, M., & Zheng, H. (2021). Comprehensive observational features for the kuroshio transport decreasing trend during a
recent global warming hiatus. Geophysical Research Letters, 48(18), e2021GL094169.
Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques.
International journal of remote sensing, 25(12), 2365–2401.
Ma, C., Wu, D., & Lin, X. (2009). Variability of surface velocity in the kuroshio current and
adjacent waters derived from argos drifter buoys and satellite altimeter data. Chinese
Journal of Oceanology and Limnology, 27(2), 208–217.
Macdonald, A. M., & Wunsch, C. (1996). An estimate of global ocean circulation and heat
fluxes. Nature, 382(6590), 436–439.
Machida, F., Andrzejak, A., Matias, R., & Vicente, E. (2013). On the effectiveness of mannkendall test for detection of software aging. In 2013 ieee international symposium on
software reliability engineering workshops (issrew) (p. 269-274). doi: 10.1109/ISSREW
.2013.6688905
Malik, A., Kumar, A., Guhathakurta, P., & Kisi, O. (2019). Spatial-temporal trend analysis
of seasonal and annual rainfall (1966–2015) using innovative trend analysis method
with significance test. Arabian Journal of Geosciences, 12(10), 1–23.
Mallat, S. G. (1989). Multiresolution approximations and wavelet orthonormal bases of ff2
(ff). Transactions of the American mathematical society, 315(1), 69–87.
Mantua, N. J., & Hare, S. R. (2002). The pacific decadal oscillation. Journal of oceanography,
58(1), 35–44.
Mariano, A. J., Griffa, A., Özgökmen, T. M., & Zambianchi, E. (2002). Lagrangian analysis
and predictability of coastal and ocean dynamics 2000. Journal of Atmospheric and
Oceanic Technology, 19(7), 1114–1126.
Martínez, B., & Gilabert, M. A. (2009). Vegetation dynamics from ndvi time series analysis
using the wavelet transform. Remote sensing of environment, 113(9), 1823–1842.
Marumo, R. (1954). Diatom plankton in the south of cape shionomisaki in 1953. Oceanogr.
Mag, 6(3), 145.
Mavor, T. P., & Bisagni, J. J. (2001). Seasonal variability of sea-surface temperature fronts
on georges bank. Deep Sea Research Part II: Topical Studies in Oceanography, 48(1-3),
215–243.
Maximenko, N. (2002). Index and composites of the kuroshio meander south of japan.
Journal of oceanography, 58(5), 639–649.
Mears, C., Lee, T., Ricciardulli, L., Wang, X., & Wentz, F. (2022). Rss cross-calibrated
multi-platform (ccmp) 6-hourly ocean vector wind analysis on 0.25 deg grid, version
3.0. Remote Sensing Systems [data set], Santa Rosa, CA, https://doi. org/10.56236/
RSS-uv6h30.
Mears, C. A., Scott, J., Wentz, F. J., Ricciardulli, L., Leidner, S. M., Hoffman, R., & Atlas,
R. (2019). A near-real-time version of the cross-calibrated multiplatform (ccmp) ocean
surface wind velocity data set. Journal of Geophysical Research: Oceans, 124(10),
6997–7010.
Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E., & Oberhuber, J. M. (1994).
Interdecadal variability of the pacific ocean: Model response to observed heat flux and
wind stress anomalies. Climate dynamics, 9(6), 287–302.
Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J.-M. (2007). Wavelets and their applications
(Vol. 330). Iste London, UK:.
Miyama, T., Nonaka, M., Nakamura, H., & Kuwano-Yoshida, A. (2012). A striking earlysummer event of a convective rainband persistent along the warm kuroshio in the east
china sea. Tellus A: Dynamic Meteorology and Oceanography, 64(1), 18962.
Mohammed, A. A. A., & Lee, S.-Y. (2022). The trend of sst, sss, ocean current, and
comparison of kuroshio strength to weather events in taiwan. In Igarss 2022 - 2022 ieee
international geoscience and remote sensing symposium (p. 7103-7106). doi: 10.1109/
IGARSS46834.2022.9883210
Mokhtar, N., Harun, N. H., Mashor, M. Y., Mustafa, N., Adollah, R., Mohd Nasir, N. F., et
al. (2009). Image enhancement techniques using local, global, bright, dark and partial
contrast stretching for acute leukemia images.
Moore, J. K., Abbott, M. R., & Richman, J. G. (1997). Variability in the location of the
antarctic polar front (90–20 w) from satellite sea surface temperature data. Journal of
Geophysical Research: Oceans, 102(C13), 27825–27833.
Moore, J. K., Abbott, M. R., & Richman, J. G. (1999). Location and dynamics of the
antarctic polar front from satellite sea surface temperature data. Journal of Geophysical
Research: Oceans, 104(C2), 3059–3073.
Murakami, H., & Kawamura, H. (2001). Relations between sea surface temperature and airsea heat flux at periods from 1 day to 1 year observed at ocean buoy stations around
japan. Journal of oceanography, 57(5), 565–580.
Nagai, T., Otsuka, K., & Nakano, H. (2019). The research advancements and historical
episodes brought by the kuroshio flowing across generations. Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics, 13–22.
Nagano, A., & Kawabe, M. (2004). Monitoring of generation and propagation of the kuroshio
small meander using sea level data along the southern coast of japan. Journal of
oceanography, 60(5), 879–892.
Nakamura, H., Ichikawa, H., Nishina, A., & Lie, H.-J. (2003). Kuroshio path meander
between the continental slope and the tokara strait in the east china sea. Journal of
Geophysical Research: Oceans, 108(C11).
Nan, F., Xue, H., Chai, F., Wang, D., Yu, F., Shi, M., … Xiu, P. (2013). Weakening of
the kuroshio intrusion into the south china sea over the past two decades. Journal of
Climate, 26(20), 8097–8110.
Nayak, R., Mishra, S., Satyesh Ghetiya, N. P., Choudhury, S., & Seshasai, M. (2018). Remote
sensing application in satellite oceanography. REMOTE SENSING, 93(2), 156–165.
Niazy, R. K., Beckmann, C. F., Brady, J. M., & Smith, S. M. (2009). Performance evaluation
of ensemble empirical mode decomposition. Advances in Adaptive Data Analysis, 1(02),
231–242.
Nieto, K., & Demarcq, H. (2006). Multi-image edge detection on sst and chlorophyll satellite
images in northern chile. In Report of the workshop on indices of mesoscale structures
(wkims) (pp. 22–24).
Nishimura, T., Kobayashi, T., Tanaka, S., & Sugimura, T. (1995). Satellite monitoring of
oceanic turbulence around japan islands. Advances in Space Research, 16(10), 137–140.
Nitani, H. (1972a). Beginning of the kuroshio. Kuroshio, Physical Aspect of the Japan
Current.
Nitani, H. (1972b). Beginning of the kuroshio. Kuroshio, Physical Aspect of the Japan
Current.
Nkwinkwa Njouodo, A. S., Koseki, S., Keenlyside, N., & Rouault, M. (2018). Atmospheric
signature of the agulhas current. Geophysical Research Letters, 45(10), 5185–5193.
Nourani, V., Tootoonchi, R., & Andaryani, S. (2021). Investigation of climate, land cover
and lake level pattern changes and interactions using remotely sensed data and wavelet
analysis. Ecological Informatics, 64, 101330.
Oka, E., & Kawabe, M. (2003). Dynamic structure of the kuroshio south of kyushu in
relation to the kuroshio path variations. Journal of oceanography, 59(5), 595–608.
Osaragi, T. (2002). Classification methods for spatial data representation.
Öztopal, A., & Şen, Z. (2017). Innovative trend methodology applications to precipitation
records in turkey. Water resources management, 31(3), 727–737.
Palaniswami, S., & Muthiah, K. (2018). Change point detection and trend analysis of rainfall
and temperature series over the vellar river basin. Polish Journal of Environmental
Studies, 27(4).
Panda, A., & Sahu, N. (2019). Trend analysis of seasonal rainfall and temperature pattern in
kalahandi, bolangir and koraput districts of odisha, india. Atmospheric Science Letters,
20(10), e932.
Paris, S., Hasinoff, S. W., & Kautz, J. (2011). Local laplacian filters: Edge-aware image
processing with a laplacian pyramid. ACM Trans. Graph., 30(4), 68.
Paris, S., Hasinoff, S. W., & Kautz, J. (2015). Local laplacian filters: edge-aware image
processing with a laplacian pyramid. Communications of the ACM, 58(3), 81–91.
Park, K.-A., Lee, E.-Y., Chang, E., & Hong, S. (2015). Spatial and temporal variability
of sea surface temperature and warming trends in the yellow sea. Journal of Marine
Systems, 143, 24–38.
Partal, T., & Kahya, E. (2006). Trend analysis in turkish precipitation data. Hydrological
Processes: An International Journal, 20(9), 2011–2026.
Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis (Vol. 4).
Cambridge university press.
Percival, D. B., Wang, M., & Overland, J. E. (2004). An introduction to wavelet analysis
with applications to vegetation time series. Community Ecology, 5, 19–30.
Platt, T., Sathyendranath, S., Forget, M.-H., White III, G. N., Caverhill, C., Bouman, H.,
… Son, S. (2008). Operational estimation of primary production at large geographical
scales. Remote Sensing of Environment, 112(8), 3437–3448.
Pohlert, T. (2016). Non-parametric trend tests and change-point detection. CC BY-ND, 4.
Poulain, P.-M. (2001). Adriatic sea surface circulation as derived from drifter data between
1990 and 1999. Journal of Marine Systems, 29(1-4), 3–32.
Poulain, P.-M., & Zambianchi, E. (2007). Surface circulation in the central mediterranean
sea as deduced from lagrangian drifters in the 1990s. Continental Shelf Research, 27(7),
981–1001.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., & Picot, N.
(2016). Duacs dt2014: the new multi-mission altimeter data set reprocessed over 20
years. Ocean Science, 12(5), 1067–1090.
Qiu, B., & Chen, S. (2010). Eddy-mean flow interaction in the decadally modulating kuroshio
extension system. Deep Sea Research Part II: Topical Studies in Oceanography, 57(13-
14), 1098–1110.
Qiu, B., Chen, S., & Hacker, P. (2004). Synoptic-scale air–sea flux forcing in the western
north pacific: Observations and their impact on sst and the mixed layer. Journal of
Physical Oceanography, 34(10), 2148–2159.
Qiu, B., & Joyce, T. M. (1992). Interannual variability in the mid-and low-latitude western
north pacific. Journal of Physical Oceanography, 22(9), 1062–1079.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An
improved in situ and satellite sst analysis for climate. Journal of climate, 15(13),
1609–1625.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G.
(2007). Daily high-resolution-blended analyses for sea surface temperature. Journal of
climate, 20(22), 5473–5496.
Rhein, M., Aoki, S., & Aoyama, M. (2011). Observations: Ocean 2. Notes, 19.
Rhif, M., Abbes, A. B., Martinez, B., de Jong, R., Sang, Y., & Farah, I. R. (2022). Detection
of trend and seasonal changes in non-stationary remote sensing data: Case study of
tunisia vegetation dynamics. Ecological Informatics, 101596.
Rhif, M., Ben Abbes, A., Farah, I. R., Martínez, B., & Sang, Y. (2019). Wavelet transform
application for/in non-stationary time-series analysis: a review. Applied Sciences, 9(7),
1345.
Rio, M.-H., Mulet, S., & Picot, N. (2014). Beyond goce for the ocean circulation estimate:
Synergetic use of altimetry, gravimetry, and in situ data provides new insight into
geostrophic and ekman currents. Geophysical Research Letters, 41(24), 8918–8925.
Roberts, H. V. (1990). Applications in business and economic statistics: some personal
views. Statistical Science, 5(4), 372–390.
Ronald Eastman, J., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., … Crema,
S. C. (2009). Seasonal trend analysis of image time series. International Journal of
Remote Sensing, 30(10), 2721–2726.
Rong, Z., Liu, Y., Zong, H., & Cheng, Y. (2007). Interannual sea level variability in the south
china sea and its response to enso. Global and Planetary Change, 55(4), 257–272.
Rousseaux, C. S., & Gregg, W. W. (2015). Recent decadal trends in global phytoplankton
composition. Global Biogeochemical Cycles, 29(10), 1674–1688.
Roy, D. P., Borak, J. S., Devadiga, S., Wolfe, R. E., Zheng, M., & Descloitres, J. (2002).
The modis land product quality assessment approach. Remote Sensing of Environment,
83(1-2), 62–76.
Saito, H. (2019). The kuroshio: its recognition, scientific activities and emerging issues.
Kuroshio current: Physical, biogeochemical, and ecosystem dynamics, 1–11.
Sakamoto, T. T., Hasumi, H., Ishii, M., Emori, S., Suzuki, T., Nishimura, T., & Sumi, A.
(2005). Responses of the kuroshio and the kuroshio extension to global warming in a
high-resolution climate model. Geophysical Research Letters, 32(14).
Sanikhani, H., Kisi, O., Mirabbasi, R., & Meshram, S. G. (2018). Trend analysis of rainfall
pattern over the central india during 1901–2010. Arabian Journal of Geosciences,
11(15), 1–14.
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C., Solomon, S., … others
(2014). Volcanic contribution to decadal changes in tropospheric temperature. Nature
Geoscience, 7(3), 185–189.
Sasaki, Y. N., & Schneider, N. (2011). Interannual to decadal gulf stream variability in an
eddy-resolving ocean model. Ocean Modelling, 39(3-4), 209–219.
Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., …
others (2019). An ocean-colour time series for use in climate studies: the experience of
the ocean-colour climate change initiative (oc-cci). Sensors, 19(19), 4285.
Savchenko, V. K., Bychkov, A. S., & Ilyichev, V. I. (1995). Kuroshio meandering and eddy
formation to the east of taiwan and their reflection in potassium fields. Terrestrial,
Atmospheric and Oceanic Sciences, 6(1), 1–11.
SChmitt, R. W. (2008). Salinity and the global water cycle. Oceanography, 21(1), 12–19.
Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461–464.
Sen, P. K. (1968). Estimates of the regression coefficient based on kendall’s tau. Journal of
the American statistical association, 63(324), 1379–1389.
Şen, Z., Şişman, E., & Dabanli, I. (2019). Innovative polygon trend analysis (ipta) and
applications. Journal of Hydrology, 575, 202–210.
Senthilkumaran, N., & Rajesh, R. (2009). Image segmentation-a survey of soft computing
approaches. In 2009 international conference on advances in recent technologies in
communication and computing (pp. 844–846).
Shi, X., Beaulieu, C., Killick, R., & Lund, R. (2022). Changepoint detection: An analysis of
the central england temperature series. Journal of Climate, 35(19), 6329–6342.
Shimada, T., Sakaida, F., Kawamura, H., & Okumura, T. (2005). Application of an edge
detection method to satellite images for distinguishing sea surface temperature fronts
near the japanese coast. Remote sensing of environment, 98(1), 21–34.
Small, R. d., deSzoeke, S. P., Xie, S., O'neill, L., Seo, H., Song, Q., … Minobe, S. (2008).
Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans,
45(3-4), 274–319.
Solomon, S. (2007). Ipcc (2007): Climate change the physical science basis. In Agu fall
meeting abstracts (Vol. 2007, pp. U43D–01).
Solomon, S., Daniel, J. S., Neely III, R. R., Vernier, J.-P., Dutton, E. G., & Thomason, L. W.
(2011). The persistently variable “background"stratospheric aerosol layer and global
climate change. Science, 333(6044), 866–870.
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., &
Plattner, G.-K. (2010). Contributions of stratospheric water vapor to decadal changes
in the rate of global warming. Science, 327(5970), 1219–1223.
Sonali, P., & Kumar, D. N. (2013). Review of trend detection methods and their application
to detect temperature changes in india. Journal of Hydrology, 476, 212–227.
Song, X., & Yu, L. (2012). High-latitude contribution to global variability of air–sea sensible
heat flux. Journal of climate, 25(10), 3515–3531.
Stramska, M., & Białogrodzka, J. (2015). Spatial and temporal variability of sea surface temperature in the baltic sea based on 32-years (1982–2013) of satellite data. Oceanologia,
57(3), 223–235.
Su, B., Jiang, T., & Jin, W. (2006). Recent trends in observed temperature and precipitation
extremes in the yangtze river basin, china. Theoretical and Applied Climatology, 83(1),
139–151.
Su, F.-C., Tseng, R.-S., Ho, C.-R., Lee, Y.-H., & Zheng, Q. (2010). Detecting surface kuroshio
front in the luzon strait from multichannel satellite data using neural networks. IEEE
Geoscience and Remote Sensing Letters, 7(4), 718–722.
Sujithlal, S., Ahana, K., Satheesan, K., & Kottayil, A. (2024). Identification of the tropopause
using the jenks natural breaks classification from 205 mhz stratosphere–troposphere
wind profiler radar. IEEE Transactions on Geoscience and Remote Sensing.
Sun, X. (1987). Analysis of the surface path of the kuroshio in the east china sea. Essays
on Investigation of Kuroshio, 1–14.
Takahashi, W., & Kawamura, H. (2005). Detection method of the kuroshio front using the
satellite-derived chlorophyll-a images. Remote Sensing of Environment, 97(1), 83–91.
Takano, I., Imawaki, S., & Kunishi, H. (1981). Ts dynamic height calculation in the kuroshio
region. La mer, 19, 75–84.
Tang, T., Tai, J., & Yang, Y. (2000). The flow pattern north of taiwan and the migration of
the kuroshio. Continental Shelf Research, 20(4-5), 349–371.
Tang, X., Wang, F., Chen, Y., & Li, M. (2009). Warming trend in northern east china sea in
recent four decades. Chinese Journal of Oceanology and Limnology, 27(2), 185–191.
Toda, T. (1993). Movement of the surface front induced by kuroshio frontal eddy. Journal
of Geophysical Research: Oceans, 98(C9), 16331–16339.
Tomita, H., & Kubota, M. (2005). Increase in turbulent heat flux during the 1990s over the
kuroshio/oyashio extension region. Geophysical research letters, 32(9).
Trenberth, K. E., Fasullo, J. T., Branstator, G., & Phillips, A. S. (2014). Seasonal aspects
of the recent pause in surface warming. Nature Climate Change, 4(10), 911–916.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Tank, A. K., … others
(2007). Observations: surface and atmospheric climate change. In Climate change 2007:
The physical science basis. contribution of working group 1 to the 4th assessment report
of the intergovernmental panel on climate change. Cambridge University Press.
Tseng, C.-T., Sun, C.-L., Yeh, S.-Z., Chen, S.-C., Liu, D.-C., & Su, W.-C. (2011). The
kuroshio variations from satellite-derived sea surface temperature and argos satellitetracking lagrangian drifters. International journal of remote sensing, 32(23), 8725–
8746.
Türkeş, M., Koç, T., & Sariş, F. (2009). Spatiotemporal variability of precipitation total series
over turkey. International Journal of Climatology: A Journal of the Royal Meteorological
Society, 29(8), 1056–1074.
Uchida, H., & Imawaki, S. (2003). Eulerian mean surface velocity field derived by combining
drifter and satellite altimeter data. Geophysical research letters, 30(5).
Ullman, D. S., & Cornillon, P. C. (1999). Satellite-derived sea surface temperature fronts
on the continental shelf off the northeast us coast. Journal of Geophysical Research:
Oceans, 104(C10), 23459–23478.
Ullman, D. S., & Cornillon, P. C. (2000). Evaluation of front detection methods for satellitederived sst data using in situ observations. Journal of Atmospheric and Oceanic Technology, 17(12), 1667–1675.
Ullman, D. S., & Cornillon, P. C. (2001). Continental shelf surface thermal fronts in winter
off the northeast us coast. Continental Shelf Research, 21(11-12), 1139–1156.
Umbert, M., Hoareau, N., Turiel, A., & Ballabrera-Poy, J. (2014). New blending algorithm to
synergize ocean variables: The case of smos sea surface salinity maps. Remote sensing
of environment, 146, 172–187.
Usui, N., Tsujino, H., Fujii, Y., & Kamachi, M. (2006). Short-range prediction experiments
of the kuroshio path variabilities south of japan. Ocean Dynamics, 56(5), 607–623.
Vázquez, D. P., Atae-Allah, C., & Escamilla, P. L. L. (1999). Entropic approach to edge
detection for sst images. Journal of Atmospheric and Oceanic Technology, 16(7), 970–
979.
Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with s-plus. Springer
Science & Business Media.
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010a). Detecting trend and
seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1),
106-115. Retrieved from https://www.sciencedirect.com/science/article/pii/
S003442570900265X doi: https://doi.org/10.1016/j.rse.2009.08.014
Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010b). Detecting trend and
seasonal changes in satellite image time series. Remote sensing of Environment, 114(1),
106–115.
Verbesselt, J., Hyndman, R., Zeileis, A., & Culvenor, D. (2010). Phenological change detection while accounting for abrupt and gradual trends in satellite image time series.
Remote Sensing of Environment, 114(12), 2970–2980.
Verbesselt, J., Zeileis, A., & Herold, M. (2012). Near real-time disturbance detection using
satellite image time series. Remote Sensing of Environment, 123, 98–108.
Wang, H., Lin, H., Munroe, D. K., Zhang, X., & Liu, P. (2016). Reconstructing rice phenology
curves with frequency-based analysis and multi-temporal ndvi in double-cropping area
in jiangsu, china. Frontiers of Earth Science, 10(2), 292.
Wang, J., Chen, A., & Yu, H. (2019a). Sea surface temperature variations over kuroshio in
the east china sea. E3S Web Conf., 131, 01048.
Wang, J., Chen, A., & Yu, H. (2019b). Sea surface temperature variations over kuroshio in
the east china sea. In E3s web of conferences (Vol. 131, p. 01048).
Wang, Y., Gao, Q., Liu, T., Tian, Y., & Yu, M. (2016). The greenness of major shrublands
in china increased from 2001 to 2013. Remote Sensing, 8(2), 121.
Wang, Y.-L., & Wu, C.-R. (2018). Discordant multi-decadal trend in the intensity of the
kuroshio along its path during 1993–2013. Scientific reports, 8(1), 14633.
Wang, Y.-L., & Wu, C.-R. (2019). Enhanced warming and intensification of the kuroshio
extension, 1999–2013. Remote Sensing, 11(1), 101.
Wang, Y.-L., Wu, C.-R., & Chao, S.-Y. (2016). Warming and weakening trends of the
kuroshio during 1993–2013. Geophysical Research Letters, 43(17), 9200–9207.
Watanabe, M., Shiogama, H., Tatebe, H., Hayashi, M., Ishii, M., & Kimoto, M. (2014).
Contribution of natural decadal variability to global warming acceleration and hiatus.
Nature Climate Change, 4(10), 893–897.
Watts, L. M., & Laffan, S. W. (2014). Effectiveness of the bfast algorithm for detecting
vegetation response patterns in a semi-arid region. Remote Sensing of Environment,
154, 234–245.
Wei, F., Wang, S., Fu, B., Pan, N., Feng, X., Zhao, W., & Wang, C. (2018). Vegetation
dynamic trends and the main drivers detected using the ensemble empirical mode decomposition method in east africa. Land degradation & development, 29(8), 2542–2553.
Wu, C., Wang, Y., Lin, Y., & Chao, S. (2017). Intrusion of the kuroshio into the south and
east china seas, sci. rep., 7, 7895.
Wu, C.-R. (2013). Interannual modulation of the pacific decadal oscillation (pdo) on the
low-latitude western north pacific. Progress in Oceanography, 110, 49–58.
Wu, C.-R., Chang, Y.-L., Oey, L.-Y., Chang, C.-W. J., & Hsin, Y.-C. (2008). Air-sea
interaction between tropical cyclone nari and kuroshio. Geophysical research letters,
35(12).
Wu, C.-R., Wang, Y.-L., Lin, Y.-F., Chiang, T.-L., & Wu, C.-C. (2016). Weakening of the
kuroshio intrusion into the south china sea under the global warming hiatus. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11),
5064-5070. doi: 10.1109/JSTARS.2016.2574941
Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., … others (2012).
Enhanced warming over the global subtropical western boundary currents. Nature
Climate Change, 2(3), 161–166.
Wu, Z., & Huang, N. E. (2004). A study of the characteristics of white noise using the
empirical mode decomposition method. Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences, 460(2046), 1597–1611.
Xi, C., Dong, H., Ke-feng, M., & Yan, L. (2018). Detailed investigation of the threedimensional structure of a mesoscale cold eddy in the kuroshio extension region. Journal
of Operational Oceanography, 11(2), 87–99.
Xie, S.-P., Hafner, J., Tanimoto, Y., Liu, W. T., Tokinaga, H., & Xu, H. (2002). Bathymetric
effect on the winter sea surface temperature and climate of the yellow and east china
seas. Geophysical Research Letters, 29(24), 81–1.
Xu, H., Xu, M., Xie, S.-P., & Wang, Y. (2011). Deep atmospheric response to the spring
kuroshio over the east china sea. Journal of Climate, 24(18), 4959–4972.
Yamamoto, T., Nishizawa, S., & Taniguchi, A. (1988). Formation and retention mechanisms
of phytoplankton peak abundance in the kuroshio front. Journal of plankton research,
10(6), 1113–1130.
Yamashiro, T., & Kawabe, M. (2002). Variations of the kuroshio axis south of kyushu in
relation to the large meander of the kuroshio. Journal of oceanography, 58(3), 487–503.
Yan, X., & Sun, C. (2015). An altimetric transport index for kuroshio inflow northeast of
taiwan island. Science China Earth Sciences, 58, 697–706.
Yang, H., Lohmann, G., Wei, W., Dima, M., Ionita, M., & Liu, J. (2016). Intensification and
poleward shift of subtropical western boundary currents in a warming climate. Journal
of Geophysical Research: Oceans, 121(7), 4928–4945.
Yu, C., Hu, D., Wang, S., Chen, S., & Wang, Y. (2021). Estimation of anthropogenic heat
flux and its coupling analysis with urban building characteristics–a case study of typical
cities in the yangtze river delta, china. Science of The Total Environment, 774, 145805.
Yu, L., & Weller, R. A. (2007). Objectively analyzed air–sea heat fluxes for the global ice-free
oceans (1981–2005). Bulletin of the American Meteorological Society, 88(4), 527–540.
Yuan, D., Han, W., & Hu, D. (2006). Surface kuroshio path in the luzon strait area derived
from satellite remote sensing data. Journal of Geophysical Research: Oceans, 111(C11).
Yue, S., & Wang, C. (2004). The mann-kendall test modified by effective sample size to
detect trend in serially correlated hydrological series. Water resources management,
18(3), 201–218.
Yusuf, A. S., Edet, C. O., Oche, C. O., & Agbo, E. (2018). Trend analysis of temperature
in gombe state using mann kendall trend test.
Zeileis, A. (2005). A unified approach to structural change tests based on ml scores, f
statistics, and ols residuals. Econometric Reviews, 24(4), 445–466.
Zeileis, A., Leisch, F., Hornik, K., & Kleiber, C. (2002). strucchange: An r package for
testing for structural change in linear regression models. Journal of statistical software,
7, 1–38.
Zhang, Y., Zhang, Z., Chen, D., Qiu, B., & Wang, W. (2020). Strengthening of the kuroshio
current by intensifying tropical cyclones. Science, 368(6494), 988–993.
Zhao, K., Valle, D., Popescu, S., Zhang, X., & Mallick, B. (2013). Hyperspectral remote
sensing of plant biochemistry using bayesian model averaging with variable and band
selection. Remote Sensing of Environment, 132, 102–119.
Zhao, K., Wulder, M. A., Hu, T., Bright, R., Wu, Q., Qin, H., … Brown, M. (2019).
Detecting change-point, trend, and seasonality in satellite time series data to track
abrupt changes and nonlinear dynamics: A bayesian ensemble algorithm. Remote
Sensing of Environment, 232, 111181. Retrieved from https://www.sciencedirect
.com/science/article/pii/S0034425719301853 doi: https://doi.org/10.1016/j.rse
.2019.04.034
Zhu, L., Wang, Y., & Fan, Q. (2014). Modwt-arma model for time series prediction. Applied
Mathematical Modelling, 38(5-6), 1859–1865.
Zhuang, Z., Zheng, Q., Zhang, X., Yang, G., Zhao, X., Cao, L., … Yuan, Y. (2020). Variability
of kuroshio surface axis northeast of taiwan island derived from satellite altimeter data.
Remote Sensing, 12(7), 1059.